44. Wildcard Matching
Difficulty: Hard
Topics: String, Dynamic Programming, Backtracking, Greedy
Similar Questions:
Problem:
Given an input string (s
) and a pattern (p
), implement wildcard pattern matching with support for '?'
and '*'
.
'?' Matches any single character. '*' Matches any sequence of characters (including the empty sequence).
The matching should cover the entire input string (not partial).
Note:
s
could be empty and contains only lowercase lettersa-z
.p
could be empty and contains only lowercase lettersa-z
, and characters like?
or*
.
Example 1:
Input: s = "aa" p = "a" Output: false Explanation: "a" does not match the entire string "aa".
Example 2:
Input: s = "aa" p = "*" Output: true Explanation: '*' matches any sequence.
Example 3:
Input: s = "cb" p = "?a" Output: false Explanation: '?' matches 'c', but the second letter is 'a', which does not match 'b'.
Example 4:
Input: s = "adceb" p = "*a*b" Output: true Explanation: The first '*' matches the empty sequence, while the second '*' matches the substring "dce".
Example 5:
Input: s = "acdcb" p = "a*c?b" Output: false
Solutions:
class Solution {
public:
bool isMatch(string s, string p) {
int m = s.length();
int n = p.length();
vector<vector<bool>> dp(m + 1, vector<bool>(n + 1, false));
dp[0][0] = true;
for (int i = 0; i <= m; ++i) {
for (int j = 0; j <= n; ++j) {
if (i == 0 && j == 0) continue;
if (j == 0) continue;
if (p[j - 1] == '*') {
dp[i][j] = dp[i][j-1];
if (i > 0) {
dp[i][j] = dp[i][j] || dp[i-1][j];
}
} else if (i > 0 && (p[j - 1] == '?' || s[i-1] == p[j-1])) {
dp[i][j] = dp[i-1][j-1];
}
}
}
return dp[m][n];
}
};
More concise DP
It is not necessary to separate the initialization process.
From [Grandyang] (https://www.cnblogs.com/grandyang/p/4461713.html)
class Solution {
public:
bool isMatch(string s, string p) {
int m = s.size(), n = p.size();
vector<vector<bool>> dp(m + 1, vector<bool>(n + 1, false));
dp[0][0] = true;
for (int i = 0; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (j > 1 && p[j - 1] == '*') {
dp[i][j] = dp[i][j - 2] || (i > 0 && (s[i - 1] == p[j - 2] || p[j - 2] == '.') && dp[i - 1][j]);
} else {
dp[i][j] = i > 0 && dp[i - 1][j - 1] && (s[i - 1] == p[j - 1] || p[j - 1] == '.');
}
}
}
return dp[m][n];
}
};