860. Design Circular Queue
Difficulty: Medium
Topics: Design, Queue
Similar Questions:
Problem:
Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Your implementation should support following operations:
MyCircularQueue(k)
: Constructor, set the size of the queue to be k.Front
: Get the front item from the queue. If the queue is empty, return -1.Rear
: Get the last item from the queue. If the queue is empty, return -1.enQueue(value)
: Insert an element into the circular queue. Return true if the operation is successful.deQueue()
: Delete an element from the circular queue. Return true if the operation is successful.isEmpty()
: Checks whether the circular queue is empty or not.isFull()
: Checks whether the circular queue is full or not.
Example:
MyCircularQueue circularQueue = new MyCircularQueue(3); // set the size to be 3 circularQueue.enQueue(1); // return true circularQueue.enQueue(2); // return true circularQueue.enQueue(3); // return true circularQueue.enQueue(4); // return false, the queue is full circularQueue.Rear(); // return 3 circularQueue.isFull(); // return true circularQueue.deQueue(); // return true circularQueue.enQueue(4); // return true circularQueue.Rear(); // return 4
Note:
- All values will be in the range of [0, 1000].
- The number of operations will be in the range of [1, 1000].
- Please do not use the built-in Queue library.
Solutions:
class MyCircularQueue {
public:
/** Initialize your data structure here. Set the size of the queue to be k. */
MyCircularQueue(int k) {
buffer.resize(k+1);
}
/** Insert an element into the circular queue. Return true if the operation is successful. */
bool enQueue(int value) {
if (isFull()) return false;
buffer[r] = value;
r = (r + 1) % buffer.size();
return true;
}
/** Delete an element from the circular queue. Return true if the operation is successful. */
bool deQueue() {
if (isEmpty()) return false;
f = (f + 1) % buffer.size();
return true;
}
/** Get the front item from the queue. */
int Front() {
if(isEmpty()) return -1;
return buffer[f];
}
/** Get the last item from the queue. */
int Rear() {
if (isEmpty()) return -1;
if (r - 1 < 0) return buffer.back();
return buffer[r - 1];
}
/** Checks whether the circular queue is empty or not. */
bool isEmpty() {
return f == r;
}
/** Checks whether the circular queue is full or not. */
bool isFull() {
return (r + 1) % buffer.size() == f;
}
private:
vector<int> buffer;
int f = 0;
int r = 0;
int cap;
};
/**
* Your MyCircularQueue object will be instantiated and called as such:
* MyCircularQueue* obj = new MyCircularQueue(k);
* bool param_1 = obj->enQueue(value);
* bool param_2 = obj->deQueue();
* int param_3 = obj->Front();
* int param_4 = obj->Rear();
* bool param_5 = obj->isEmpty();
* bool param_6 = obj->isFull();
*/