1078. Remove Outermost Parentheses
Difficulty: Easy
Topics: Stack
Similar Questions:
Problem:
A valid parentheses string is either empty (""), "(" + A + ")", or A + B, where A and B are valid parentheses strings, and + represents string concatenation. For example, "", "()", "(())()", and "(()(()))" are all valid parentheses strings.
A valid parentheses string S is primitive if it is nonempty, and there does not exist a way to split it into S = A+B, with A and B nonempty valid parentheses strings.
Given a valid parentheses string S, consider its primitive decomposition: S = P_1 + P_2 + ... + P_k, where P_i are primitive valid parentheses strings.
Return S after removing the outermost parentheses of every primitive string in the primitive decomposition of S.
Example 1:
Input: "(()())(())" Output: "()()()" Explanation: The input string is "(()())(())", with primitive decomposition "(()())" + "(())". After removing outer parentheses of each part, this is "()()" + "()" = "()()()".
Example 2:
Input: "(()())(())(()(()))" Output: "()()()()(())" Explanation: The input string is "(()())(())(()(()))", with primitive decomposition "(()())" + "(())" + "(()(()))". After removing outer parentheses of each part, this is "()()" + "()" + "()(())" = "()()()()(())".
Example 3:
Input: "()()" Output: "" Explanation: The input string is "()()", with primitive decomposition "()" + "()". After removing outer parentheses of each part, this is "" + "" = "".
Note:
S.length <= 10000S[i]is"("or")"Sis a valid parentheses string
Solutions:
class Solution {
public:
string removeOuterParentheses(string S) {
string ret;
int balance = 0;
int left = 0;
for (int i = 0; i < S.length(); ++i) {
balance += (S[i] == '(' ? 1 : -1);
if (balance == 1 && S[i] == '(') {
left = i;
} else if (balance == 0 && S[i] == ')') {
ret.append(S.substr(left + 1, i - left - 1));
}
}
return ret;
}
};