843. Binary Trees With Factors
Difficulty: Medium
Topics:
Similar Questions:
Problem:
Given an array of unique integers, each integer is strictly greater than 1.
We make a binary tree using these integers and each number may be used for any number of times.
Each non-leaf node's value should be equal to the product of the values of it's children.
How many binary trees can we make? Return the answer modulo 10 ** 9 + 7.
Example 1:
Input:A = [2, 4]
Output: 3 Explanation: We can make these trees:[2], [4], [4, 2, 2]
Example 2:
Input:A = [2, 4, 5, 10]
Output:7
Explanation: We can make these trees:[2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2]
.
Note:
1 <= A.length <= 1000
.2 <= A[i] <= 10 ^ 9
.
Solutions:
class Solution {
public:
int numFactoredBinaryTrees(vector<int>& A) {
sort(A.begin(), A.end());
map<int, long> dp;
long ret = 0;
for (int i = 0; i < A.size(); ++i) {
dp[A[i]] = 1;
for (auto it = dp.begin(); it != dp.end(); ++it) {
if (A[i] % it->first == 0 && dp.count(A[i]/it->first)) {
dp[A[i]] = (dp[A[i]] + it->second * dp[A[i]/it->first]) % MOD;
}
}
ret = (ret + dp[A[i]]) % MOD;
}
return ret;
}
private:
int MOD = 1e9 + 7;
};