109. Convert Sorted List to Binary Search Tree
Difficulty: Medium
Topics: Linked List, Depth-first Search
Similar Questions:
Problem:
Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted linked list: [-10,-3,0,5,9], One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST: 0 / \ -3 9 / / -10 5
Solutions:
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* sortedListToBST(ListNode* head) {
if (head == nullptr) return nullptr;
int count = 0;
ListNode* cur = head;
while (cur) {
++count;
cur = cur->next;
}
return helper(head, count);
}
TreeNode* helper(ListNode*& head, int count) {
if (count == 0) return nullptr;
if (count == 1) {
int val = head->val;
head = head->next;
return new TreeNode(val);
}
int mid = (count+1)/2;
int leftCount = mid - 1;
int rightCount = count - 1 - leftCount;
TreeNode* left = helper(head, leftCount);
int val = head->val;
head = head->next;
TreeNode* root = new TreeNode(val);
TreeNode* right = helper(head, rightCount);
root->left = left;
root->right = right;
return root;
}
};