454. 4Sum II
Difficulty: Medium
Topics: Hash Table, Binary Search
Similar Questions:
Problem:
Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l)
there are such that A[i] + B[j] + C[k] + D[l]
is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Example:
Input: A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2] Output: 2 Explanation: The two tuples are: 1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0 2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
Solutions:
class Solution {
public:
int fourSumCount(vector<int>& A, vector<int>& B, vector<int>& C, vector<int>& D) {
unordered_map<int, int> valueFreq;
for (int i = 0; i < A.size(); ++i) {
for (int j = 0; j < B.size(); ++j) {
++valueFreq[A[i] + B[j]];
}
}
int count = 0;
for (int i = 0; i < C.size(); ++i) {
for (int j = 0; j < D.size(); ++j) {
count += valueFreq[-C[i] - D[j]];
}
}
return count;
}
};