120. Triangle
Difficulty: Medium
Topics: Array, Dynamic Programming
Similar Questions:
Problem:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Solutions:
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
if (triangle.size() == 0) return 0;
int level = triangle.size();
vector<int> dp (level, INT_MAX);
dp[0] = 0;
for (auto& values : triangle) {
for (int i = values.size() - 1; i >= 1; --i) {
dp[i] = values[i] + min(dp[i-1], dp[i]);
}
dp[0] = values[0] + dp[0];
}
int ret = INT_MAX;
for (auto bottom : dp) {
ret = min(ret, bottom);
}
return ret;
}
};