60. Permutation Sequence
Difficulty: Medium
Topics: Math, Backtracking
Similar Questions:
Problem:
The set [1,2,3,...,n]
contains a total of n! unique permutations.
By listing and labeling all of the permutations in order, we get the following sequence for n = 3:
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note:
- Given n will be between 1 and 9 inclusive.
- Given k will be between 1 and n! inclusive.
Example 1:
Input: n = 3, k = 3 Output: "213"
Example 2:
Input: n = 4, k = 9 Output: "2314"
Solutions:
class Solution {
public:
string getPermutation(int n, int k) {
string digits = "123456789";
digits = digits.substr(0, n);
if (n == 1) return "1";
int base = 1;
for (int i = 1; i < n; ++i) {
base *= i;
}
helper(digits, base, k - 1);
return ret;
}
void helper(string& digits, int base, int k) {
cout << base << endl;
if (digits.length() == 0) return;
int index = k/base;
ret.push_back(digits[index]);
digits.erase(index, 1);
if (digits.length() == 1) {
ret.push_back(digits[0]);
return;
}
int newBase = base/(digits.length());
helper(digits, newBase, k - index * base);
}
private:
string ret;
};