254. Factor Combinations
Difficulty: Medium
Topics: Backtracking
Similar Questions:
Problem:
Numbers can be regarded as product of its factors. For example,
8 = 2 x 2 x 2; = 2 x 4.
Write a function that takes an integer n and return all possible combinations of its factors.
Note:
- You may assume that n is always positive.
- Factors should be greater than 1 and less than n.
Example 1:
Input: 1
Output: []
Example 2:
Input: 37
Output:[]
Example 3:
Input: 12
Output:
[
[2, 6],
[2, 2, 3],
[3, 4]
]
Example 4:
Input: 32
Output:
[
[2, 16],
[2, 2, 8],
[2, 2, 2, 4],
[2, 2, 2, 2, 2],
[2, 4, 4],
[4, 8]
]
Solutions:
class Solution {
public:
vector<vector<int>> getFactors(int n) {
vector<int> path;
vector<vector<int>> ret;
for (int i = 2; n / i >= i; ++i) {
if (n % i == 0) {
path.push_back(i);
helper(n/i, i, path, ret);
path.pop_back();
}
}
return ret;
}
private:
void helper(int n, int factor, vector<int>& path, vector<vector<int>>& ret) {
if (factor > n) return;
for (int i = factor; i <= n / i; ++i) {
if (n % i == 0) {
path.push_back(i);
helper(n / i, i, path, ret);
path.pop_back();
}
}
path.push_back(n); // the number itself should be considered!
ret.push_back(path);
path.pop_back(); // pop back!
}
};