348. Design Tic-Tac-Toe
Difficulty: Medium
Topics: Design
Similar Questions:
Problem:
Design a Tic-tac-toe game that is played between two players on a n x n grid.
You may assume the following rules:
- A move is guaranteed to be valid and is placed on an empty block.
- Once a winning condition is reached, no more moves is allowed.
- A player who succeeds in placing n of their marks in a horizontal, vertical, or diagonal row wins the game.
Example:
Given n = 3, assume that player 1 is "X" and player 2 is "O" in the board. TicTacToe toe = new TicTacToe(3); toe.move(0, 0, 1); -> Returns 0 (no one wins) |X| | | | | | | // Player 1 makes a move at (0, 0). | | | | toe.move(0, 2, 2); -> Returns 0 (no one wins) |X| |O| | | | | // Player 2 makes a move at (0, 2). | | | | toe.move(2, 2, 1); -> Returns 0 (no one wins) |X| |O| | | | | // Player 1 makes a move at (2, 2). | | |X| toe.move(1, 1, 2); -> Returns 0 (no one wins) |X| |O| | |O| | // Player 2 makes a move at (1, 1). | | |X| toe.move(2, 0, 1); -> Returns 0 (no one wins) |X| |O| | |O| | // Player 1 makes a move at (2, 0). |X| |X| toe.move(1, 0, 2); -> Returns 0 (no one wins) |X| |O| |O|O| | // Player 2 makes a move at (1, 0). |X| |X| toe.move(2, 1, 1); -> Returns 1 (player 1 wins) |X| |O| |O|O| | // Player 1 makes a move at (2, 1). |X|X|X|
Follow up:
Could you do better than O(n2) per move()
operation?
Solutions:
class TicTacToe {
public:
/** Initialize your data structure here. */
TicTacToe(int n) {
this->n = n;
rowCount[0].resize(n);
rowCount[1].resize(n);
colCount[0].resize(n);
colCount[1].resize(n);
}
/** Player {player} makes a move at ({row}, {col}).
@param row The row of the board.
@param col The column of the board.
@param player The player, can be either 1 or 2.
@return The current winning condition, can be either:
0: No one wins.
1: Player 1 wins.
2: Player 2 wins. */
int move(int row, int col, int player) {
if (++rowCount[player - 1][row] == n) return player;
if (++colCount[player - 1][col] == n) return player;
if (row == col) {
if(++diagonalCount[player - 1] == n) return player;
}
if (row + col == n - 1) {
if (++antiDiagonalCount[player - 1] == n) return player;
}
return 0;
}
private:
int n;
vector<int> rowCount[2];
vector<int> colCount[2];
int diagonalCount[2] {0};
int antiDiagonalCount[2] {0};
};
/**
* Your TicTacToe object will be instantiated and called as such:
* TicTacToe* obj = new TicTacToe(n);
* int param_1 = obj->move(row,col,player);
*/