
An IoT Data Communication Framework for Authenticity and
Integrity

Xin Li

University of California Santa Cruz

xinli@ucsc.edu

Huazhe Wang

University of California Santa Cruz

hwang137@ucsc.edu

Ye Yu

University of Kentucky

ye.yu@uky.edu

Chen Qian

University of California Santa Cruz

cqian12@ucsc.edu

ABSTRACT
Internet of Things has been widely applied in everyday life, rang-

ing from transportation, healthcare, to smart homes. As most IoT

devices carry constrained resources and limited storage capacity,

sensing data need to be transmitted to and stored at resource-rich

platforms, such as a cloud. IoT applications retrieve sensing data

from the cloud for analysis and decision-making purposes. Ensur-

ing the authenticity and integrity of the sensing data is essential

for the correctness and safety of IoT applications. We summarize

the new challenges of the IoT data communication framework with

authenticity and integrity and argue that existing solutions cannot

be easily adopted. We present two solutions, called Dynamic Tree

Chaining (DTC) and Geometric Star Chaining (GSC) that provide

authenticity, integrity, sampling uniformity, system e�ciency, and

application �exibility to IoT data communication. Extensive simula-

tions and prototype emulation experiments driven by real IoT data

show that the proposed system is more e�cient than alternative

solutions in terms of time and space.

CCS CONCEPTS
• Information systems → Information extraction; • Security
and privacy → Security protocols; • Networks → Cloud com-
puting; Cyber-physical networks;

KEYWORDS
IoT, Cloud, Authentication, Partial Data Retrieval, Sampling

ACM Reference format:
Xin Li, Huazhe Wang, Ye Yu, and Chen Qian. 2017. An IoT Data Commu-

nication Framework for Authenticity and Integrity. In Proceedings of The
2nd ACM/IEEE International Conference on Internet-of-Things Design and
Implementation, Pittsburgh, PA USA, April 2017 (IoTDI 2017), 12 pages.

DOI: 10.1145/3054977.3054982

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

IoTDI 2017, Pittsburgh, PA USA
© 2017 ACM. 978-1-4503-4966-6/17/04. . . $15.00

DOI: 10.1145/3054977.3054982

Sensing devices
Data application

Cloud

Figure 1: IoT data communication framework

1 INTRODUCTION
Internet of Things (IoT) is being widely applied in a great number

of everyday applications such as healthcare [2, 13], transportation

[22], smart home [9, 14, 24], and surveillance systems [17, 25]. In-

ternet of Things (IoT) is fast growing at an unprecedented rate:

the number of connected IoT sensing devices is expected to reach

8 billion by 2018, predicted by Cisco [29]. IoT devices generate a

large amount of sensing data to re�ect physical environments or

conditions of objects and human beings. As most IoT devices carry

constrained resource and limited storage capacity, sensing data

need to be transmitted to and stored at resource-rich platforms,

such as a cloud. On the other hand, analyzing historical sensing

data is essential for decision-making in various IoT applications

[14] [32]. For example, Nest Learning Thermostat [14], a system

that controls the temperature of a smart home automatically and

intellectually, learns a user’s preference by analyzing history data

of the home. Hence IoT applications retrieve sensing data from

the cloud for analysis and decision making purposes. To this end,

both state-of-art IoT proposals [23, 24] and industrial practices [11]

adopt the centralized data store residing in the cloud, as depicted

in Fig. 1.

In this paper we present the design of an IoT data communication

framework involving the three key entities: sensing devices, cloud,

and data applications. We summarize the following key require-

ments or challenges of the IoT data communication framework,

which distinguish it from traditional data collection and manage-

ment methods.

1) Time series data and event data. IoT sensing data can be

classi�ed into two types: time series data and event data [39]. Time

IoTDI 2017, April 2017, Pi�sburgh, PA USA X. Li et al.

Table 1: Overall comparison of signature schemes.

Signature Scheme Computational e�ciency Constant space Partial data retrieval Sampling uniformity

Sign-each X X X X

Concatenate X X X X

Hash chaining X X X X

DTC X X X X

GSC X X X X

series data are generated by each device for every �xed time period,

such as 1 second. They are used to conduct continuous monitor-

ing tasks such as temperature reports. Event data are generated

whenever certain types of events occur, such as a vehicle appear-

ing in a smart camera. They are used to monitor discrete events.

Note event-based data are more di�cult to manage than time series.

Hence this paper focuses on �nding a solution for event-based data.
The proposed methods can be easily adjusted for time series data.

2) Data sampling. A common but critical problem shared by

state-of-art IoT designs is that the resources for transmitting and

storing data (e.g. network bandwidth, storage quota) are limited in

the presence of massive IoT data. By 2022, IoT data are expected to

constitute 45% tra�c in the Internet [20]. Cloud providers charge

users for storage, retrieval and transferring of data [12]. It is desired

to have predictable cost for both users (in �nance) and the cloud (in

resource) [18]. Hence only a �xed resource budget can be allocated

to the sensing data over a time period, called an epoch. For example,

the cloud can only keep up to 100 data records from any device

during any minute. Data sampling is the approach to make sensing

data within a �xed budget. To guarantee the sampling quality, every

event should have an equal probability to be sampled among all

events in the epoch, which is called the uniformity property [18].

3)Authenticity and integrity. Since the sensing data are stored

in a third-party cloud, they could be corrupted by outside attackers,

malicious cloud employees [27], transmission failures, or storage

loss [8]. Therefore, data authenticity and integrity, which guarantee

that data are from these sensing devices and has not been modi�ed

or partially dropped, are important for trustworthy IoT applications

[34]. Without data authenticity and integrity, IoT applications may

make wrong decisions and cause economic and human-life losses.

Authenticity and integrity should be veri�able by data applications.

4) Flexible application requirements. Di�erent applications

may have di�erent requirements on sensing data granularity. For

example, applications like self-driving cars need �ne-grained road

information, while other applications like road-tra�c estimation

only need a few sampled data. Even if the cloud can store up to

100 records, some applications only retrieve part of them, e.g., 10

records, due to bandwidth/memory limit, or application require-

ments. A possible attack is that a malicious cloud operator may

selectively send partial data to a user, e.g., those outlier data, and

lead the user to a wrong decision. Hence we require the partial data

should have veri�able authenticity, integrity, and uniformity. We

call this feature as partial data retrieval.
There is no existing solution that can address all these challenges.

Since sensing devices and data applications do not communicate

directly in sessions, existing secure transport protocols cannot be

used. Digital signature is a widely used method to protect data au-

thenticity and integrity: The sender �rst computes a message digest

D by hashing its original message m using a cryptographic hash

function H , D = H (m). H is also called message digest function.

Note the length of D is signi�cantly shorter than that ofm. Then

the sender uses its private key pk−1 to encrypt D and attach the

signature Epk−1 [D] to the original message. When the receiver gets

m′ and Epk−1 [D], it decrypts Epk−1 [D] using the public key of the

sender and veri�es whether D = H (m′). However, applying digital

signature to every sensing record, called the Sign-each method,

is not practical, because public-key encryptions/decryptions are

considered slow and expensive, especially for sensing devices with

limited resources. A more e�cient method, concatenate, is to com-

pute the message digest D for a large number of records and sign

once on D. This approach requires each sensing device to cache

all records and has the all-or-nothing feature: If some applications

only require part of the records, the signature cannot be veri�ed.

A well-known method to sign a data stream is hash chaining [21].

However it does not �t the IoT framework either, because event-

based sampling and partial data retrieval will break the chain and

make the signature unveri�able.

We summarize our contribution in this paper as follows.

1) Our �rst e�ort is to extend a well-known digital signature,

Merkle tree [28, 37], to a method Dynamic Tree Chaining (DTC)

that can be used in the IoT data communication framework. DTC

supports veri�able authenticity and integrity for event-based sam-

pling and partial data retrieval. However, it does not guarantee

sampling uniformity.

2) Our main contribution is an e�cient digital signature method,

Geometric Star Chaining (GSC), a speci�c design for the IoT data

communication framework. GSC allows each sensing device to sign

only once for all data records in an epoch and provides veri�able

authenticity, integrity, and uniformity for partial data retrieval.

The signing and verifying throughput of GSC are signi�cantly

higher than that of DTC. We compare GSC, DTC, and other possible

methods in TABLE 1.

3) We also investigate the problem of shared budget constraint for

a group of sensing devices and extend GSC to resolve this problem

4) We conduct excessive simulations and prototype emulation

experiments. The results show that the proposed system is e�cient

and practical.

The rest of this paper is organized as follows. We present the

problem statement in Sec. 2. We describe the system design de-

tails and extend it to incorporate budget limit in Sec. 3 and Sec. 4

respectively. Security analysis is presented in Sec. 5. We conduct

extensive simulations and prototype emulations in Sec. 6. Sec. 7

An IoT Data Communication Framework for Authenticity and Integrity IoTDI 2017, April 2017, Pi�sburgh, PA USA

presents related work. Some practical issues are discussed in Sec. 8.

Finally, we conclude this work in Sec. 9.

2 PROBLEM STATEMENT
2.1 Network Model
We demonstrate the life cycle of IoT sensing data in Fig. 1. Three

di�erent kinds of entities are identi�ed as follows.

• Sensing devices are distributed electronic equipments

that generate IoT sensing data. They usually have limited

computation, memory, and power resources.

• Cloud is an ISP or a third-party cloud provider who has

rich resources and expertise in operating cloud computing

services. It charges clients for data storage and data access.

• Data applications are software systems or devices that

may request to retrieve the sensing data for analysis pur-

poses. Di�erent data applications may have di�erent data

requirements.

Sensing devices generate data reports when events of interests

happen. A data source is modeled as an unpredictable sequence of

events. Due to resource budget constraints (e.g. network bandwidth

and storage quota at the cloud), not all events are actually reported

or stored in a given period of time (i.e. an epoch). However, all

events should have a uniform probability to be sampled and stored.

An application may fetch all or a fraction of data from the cloud of

an epoch to conduct postprocessing based on their requirements.

A formal description of the network model is presented as be-

low. For device i , its source event data are represented as Ei =

(e1i , e
2

i , ..., e
n
i , ...). Event e

j
i is generated by device di at time t

j
i in

an online fashion. That is, t
j
i < t

j+1
i and the value of time stamp

t
j
i is unpredictable until event e

j
i occurs. Suppose the k-th epoch

starts at timeT ks and ends atT ke . We de�ne Eki , {e ji ∈ ‖Ei ‖ : T
k
s ≤

t
j
i < T ke } as the set of events monitored by device di during the

k-th epoch
1
. Let B be the budget limit for each epoch. Due to the

budget constraint, only ni events are sampled from device i during

every epoch such that

∑
ni ≤ B.

2.2 Threat Model
We assume only IoT sensing devices and data applications are

trustworthy and any entities in between are subject to attack or

may perform functionalities in a dishonest way.

While clients trust cloud providers to perform their services

correctly, there are increasing concerns about the security of out-

sourced data. The security threats may be attributed to management

errors or software/hardware bugs which lead to Byzantine failures.

A recent report [8] describes massive cloud service outages that

a�ect many companies and result in data corruption. Even worse,

there may exist adversaries and hackers who have gained accesses

to data on clouds and are able to manipulate or delete clients’ data

without being detected by cloud providers.

The goal of this paper is to allow IoT applications to have the

capability to verify the authentication and integration of the stored

sensing data and support partial data retrieval. We do not address
the issue of data con�dentiality or privacy in this paper. They are

1 ‖Ei ‖ denotes the set interpretation of sequence Ei .

Table 2: Important Notations.

Notation De�nition
Di Message digest of sample block i or event i

Di j Message digest summarizing ith till jth events

H (·) Message digest function

pk Public key

pk−1 Private key

Epk−1 [·] Encrypt using private key pk−1

Epk [·] Decrypt using public key pk

n Number of events monitored

K Number of sensing devices

Si Numerical interval between 2
−i−1

and 2
i

h(·) Hashing function whose range is between 0 and 1

B Budget limit

orthogonal to the problem we study in this paper and there are

many existing works focusing on these issues in the cloud [35] [26].

3 SYSTEM DESIGN
In this section, we discuss how the IoT data communication frame-

work should be designed to address all challenges presented in

Sec. 1.

3.1 Existing Signature Schemes
Digital signature is widely used to ensure data authenticity and

integrity. However, none of existing signature schemes are appro-

priate for the IoT scenario described in Sec. 1.

First, the Sign-each method causes expensive computational cost

on both signer/veri�er sides owe to excessive public-key encryption

and decryption operations. It is known that public-key encryption

and decryption is much slower and more energy-consuming than

symmetric-key encryption/decryption and cryptographic hashing.

For example signing one short message using RSA with a 1024-bit

key consumes approximately 360mWs and takes about 12 seconds

on one popular wireless sensor network platform, while comput-

ing SHA-1 of the same message consumes less than 1mWs [30].

Furthermore, the Sign-each method may not be able to detect data

loss.

The concatenate signature scheme can amortize the signing and

veri�cation cost to multiple messages, but it is not suitable for

sensing devices which may be lack of bu�er space to accommodate

all messages. In addition, it does not support partial data retrieval.

Hash chaining [21] reduces the bu�er space complexity from

O (m) to O (1) for both the signer and veri�er, wherem is the num-

ber of messages bu�ered in the sensing device to be jointly signed.

In hash chaining signature scheme, only the �rst message is signed

and each message carries the one-time signature for the succeed-

ing message. However, hash chaining fails when some events are

dropped due to sampling or partial data retrieval.

To address the aforementioned problems when applying digital

signature in the IoT scenario, we propose two signature schemes.

1) the Dynamic Tree Chaining (DTC) that is developed based on

Merkle tree [28]. DTC serves as the baseline in this paper. 2) a novel

IoTDI 2017, April 2017, Pi�sburgh, PA USA X. Li et al.

signature scheme speci�cally designed for the IoT data commu-

nication framework, called Geometric Star Chaining (GSC). GSC

outperforms DTC in terms of throughput and memory consump-

tion. GSC provides veri�able uniformity while DTC does not.

3.2 Dynamic Tree Chaining (DTC)
We start from the Tree chaining designed by Wong and Lam [37],

one variation of Merkle tree [28]. The digest of each event report

is one leaf node in the binary authentication tree presented in

Fig. 2. The value of any internal node is computed as the hash-

ing of the concatenation of its two children. Take the authentica-

tion tree in Fig. 2 as an example. D12 is the parent of D1 and D2

and D12 = H (D1 | |D2), where H (·) is the message digest function,

such as SHA-1 [10] or MD5 [1]. Likewise, D14 = H (D12 | |D34) and

D18 = H (D14 | |D58). As a result, the root summarizes all the leaf

nodes. The root node is regarded as the block digest and is signed

by the private key to create the block signature.

The veri�cation process is on a per-event basis. In order to verify

the authenticity/integrity of an event e , the veri�er requires the

block signature, the position of event e in the authentication tree

and the sibling nodes in the path to the root, which are all appended

to event e . Basically, the veri�cation algorithm is to replay the

process to build the authentication tree and to verify the nodes

in the path to the root. Image the receiver begins to verify event

e3 which is represented as the dashed circle in Fig. 2. First, the

receive computes D ′
3
= H (e3) and then its ancestors in order: D ′

34
=

H (D ′
3
| |D4), D

′
14
= H (D12 | |D

′
34
), D ′

18
= H (D ′

14
| |H48). Event e3 is

veri�ed if the decrypted block signature equal D ′
18

, that is to say

Epk
[
Epk−1 [D18]

]
= D ′

18
, where Epk−1 [·] denotes singing using

private key and Epk [·] is the function to decrypt signature with

public key. In this case, all the nodes in the path as well as their

siblings are veri�ed and they could be cached to accelerate the

veri�cation process. Suppose the event e4 arrives after e3 have been

veri�ed. Event e4 is veri�ed directly if H (e4) = D4.

Note that the expensive encryption operation is amortized to

all events in one authentication tree and thus tree chaining is com-

putational e�cient. More importantly, since every single event is

veri�able in tree chaining, it is fully compatible with partial data

retrieval. The most severe issue that impedes the adoption of the

original tree chaining in IoT environment is that all events should

be bu�ered in the sensing device before the building of the au-

thentication tree, since each event ought to be appended auxiliary

authentication information from the authentication tree.

We observe that introducing the cloud can greatly reduce the

memory footprint at sensing devices. The sensing device only main-

tains the message digest of each event and stores all events to the

cloud directly without caching. At the end of each epoch, with all

leaf nodes available, the sensing device build the authentication

tree, which is then sent to the cloud immediately. The cloud in

turn attaches essential authentication information to each event

just received. The memory footprint can be further optimized if

the authentication tree grows in an online fashion and the sensing

device transmits to the cloud the nodes that are no longer needed

for calculating the remaining authentication tree. We reuse Fig. 2 to

illustrate the online authentication tree building process. D1 − D8

represent the message digests of the events in timely order. D12 is

D1 D2 D3 D4 D5 D6 D7 D8

D12 D34 D56 D78

D14 D58

D18

Figure 2: Illustration of tree chaining. Verifying D3 requires
sibling nodes in the path to the root (D4, D34, D58), signature
of the root (Epk−1 [D18]) and the position of e in the tree.

calculated immediately when D2 comes into play. In the meantime,

D1 and D2 cached in the sensing device are transmitted to the cloud.

Likewise, when D4 is available, D34 is computed, which in turn im-

mediately contributes the calculation of D14. As a result, at that

time D3, D4, D12 and D34 are dismissed from the sensing device.

It is not hard to imply that this optimization reduces the space

complexity in the sensing device to host nodes of authentication

tree from O (n) to O (logn), where n denotes the number of events

monitored in one epoch.

Nevertheless, the number of generated events is unpredictable

and may be unbounded. Once the bu�er in the sensing device is full,

the root node in the authentication tree is signed and the remaining

nodes are �ushed to the cloud to spare space for upcoming events.

Therefore, one sensing device may apply digital signature more

than once in one single epoch. The veri�er also requires additional

space to cache the veri�ed nodes. The veri�er stops caching new

veri�ed nodes when the bu�er is full.

As a result, the bu�er space constrains the performance of DTC,

which is a particularly severe problem in IoT environment where

most devices possess little bu�er space. More importantly, DTC
provides no veri�able uniformity for event sampling and partial data
retrieval, because data selection is completely executed in the cloud.

If the cloud selects event samples or the partial data with bias, data

applications are unaware of it.

3.3 Geometric Star Chaining (GSC)
We propose a more e�cient and secure data communication frame-

work in this paper, called Geometric Star Chaining (GSC). The

basic idea of GSC is inspired by one observation that any arbitrary

fraction value can be represented or closely approximated by a

few number of binary digits. For instance, 5/8 = (0.101)2. Thus,

partial data with sample rate p, where p =
∑
2
−bi

, is equivalent

to the union of multiple data blocks each corresponds to one set

bit in the binary representation. One data block is called a sample
blocks in this paper. For instance, to retrieve a sampled data from

all sensing data from a device within an epoch with sampling rate

5/8, the cloud can send the data application two blocks containing

(approximately) 1/2 and 1/8 of the data respectively.

An IoT Data Communication Framework for Authenticity and Integrity IoTDI 2017, April 2017, Pi�sburgh, PA USA

(0.25,0.5]

(0.5, 1]

(0.125,
0.25]

h()

...

Figure 3: Visualization of numerical intervals.

The events included in the sample blocks are in geometric distri-
bution. Each sample block should draw events uniformly from the

IoT data stream. In order to ease the presentation of how sample

blocks form, we de�ne a set of successive numerical intervals {Si }
where Si , {x ∈ R : 2

−i−1 < x ≤ 2
−i , i ∈ N}, which are visually

represented as rectangles in Fig. 3. On receiving a new event e ,

the sensing device computes which numeric interval in {Si } that

h(e) falls in and event e is inserted into the corresponding sample

block, where h(·) is a non-cryptographic uniform random hashing

function and ∀x : 0 ≤ h(x) ≤ 1.

Events within a same data block are either completely retrieved

or not retrieved at all. Thus we can view each data block as an atomic

“giant event”. GSC computes one message digest for every block and

concatenates these digests to a single digest for digital signature, as

is depicted in Fig. 4. The digest of each sample block is computed

in an online fashion. One variable Di is allocated to each sample

block to capture the newest value of the message digest. Suppose

a new event e is observed at the device which belongs to the ith
sample block. The message digest is updated as Di = h (h(e) | |Di).
This online updating proceeds until the end of the epoch. At last,

the concatenate approach is applied to all the message digests {Di }.

Note the value i , which indicates the sampling rate of each block,

should also be stored and hashed with the block. In this way, the

application that receives the block can verify the sampling rate.

In fact, any random function can be used to implement the geo-

metric distribution for GSC, such as continuous coin-tossing, but

using a uniform random hash is convenient. One practical issue

about hashing is that the raw output of hashing functions is one

�nite-length bit sequence. Computing which numerical interval in

{Si } that h(e) fall in is equivalent to counting leading zeros (CLZ)

in that bit sequence, which is intrinsically supported in many hard-

ware platforms including X86 and ARM. Therefore, |{Si }| and hence

|{Di }| are bounded by the size of the bit sequence. For the case of

xxHash64 [16], this function produces 64-bit hash values and thus

|{Si }0≤i≤64 | = 65 and |{Di }0≤i≤64 | = 65. It is evident that space

cost for this signature scheme at the sensing device is constant.

If the number of events exceeds the budget for a sensing device,

the cloud may drop sample blocks starting from i = 0 until the

remaining blocks �t the storage budget. Note uniformity is still pre-

served because all events are equally likely to fall into any sample

block.

D1

D2

D3

D4

Event

Hash

D14

Figure 4: Illustration of GSC. Verifying the second sample
block requires all events within it as well as D1, D3, D4 and
signature of the root (Epk−1 [D14]).

3.4 Data Retrieval and Veri�cation
A sampled fraction of sensing data is usually su�cient for most

IoT applications [6]. In the network model presented in Sec. 2.1, an

application requests for a certain fraction of events observed at a

particular sensing device from the cloud. GSC provides veri�able

authenticity, integrity, and uniformity for partial data retrieval with

an arbitrary sampling rate.

Based on the application requirement, a data application �rst

determines the maximum number of events of each sensing device

for an epoch it wants to receive, called a portion number. It then

sends all portion numbers to the cloud. For each portion number,

the cloud converts it to a sampling rate p and constructs the binary

expression of p, such that p =
∑
2
−bi

where bi is the position of

the i-th 1 in the binary expression of p. Then the cloud sends the

corresponding sample blocks to the application. For example, if the

application requests for data with a sample rate of 5/8 = (0.101)2, it

should fetch two sample blocks correspond to sample rate of 2
−1

and

2
−3

respectively. The message digests associated with all sample

blocks from one epoch are stored in a single �le, such that it is

convenient for the application to access the necessary information

to verify the data. This step veri�es the following properties. 1) The

received blocks were not modi�ed or partially dropped and 2) The

data were indeed uniformly sampled based on the given sampling

rates.

Compared to DTC, GSC requires smaller bu�er size on each

sensing device and the data application. It also provides veri�able

uniformity which DTC does not. In addition, retrieving GSC-signed

IoT data from the cloud can be achieved by sequential reads which

are much faster than random reads [5] [7].

We dot not discuss how the data is stored in the cloud internally,

as it is orthogonal to our framework design.

4 INCORPORATING BUDGET LIMIT
IoT data volume is growing in an unprecedent speed over the years.

With ever-increasing volume of IoT data, storing all raw IoT data

in the cloud poses a heavy monetary burden on the users. Since

a small fraction of uniformly sampled IoT data satisfy most IoT

IoTDI 2017, April 2017, Pi�sburgh, PA USA X. Li et al.

applications, we identify the necessity to uniformly sample IoT

data before storing them in the cloud.

4.1 Sampling Protocol Design
In this section, we describe a sampling protocol taking the bud-

get limit into consideration, which respects the network model

described in Sec. 2.1. This sampling protocol introduces a new en-

tity, called a coordinator (sometimes it is also called a hub), in the

network model. One coordinator is a software working as a sampler

which sits between the sensing devices and the cloud. A coordina-

tor can be installed on an access point or a server at the edge of

Internet. It maintains communications with all sensing devices on

behalf of the cloud and temporarily bu�ers IoT data samples.

We focus on one single epoch in this discussion since at the

beginning of each epoch, the sampling protocol (SP) is reset to the

initial state. At the end of each epoch, the coordinator signal all

sensing devices to advance to the next epoch. The straightforward

solution is to bu�er all the events in the coordinator and uniformly

sample them based on the budget limit. However, the number of

these events could possibly be very large, and therefore the storage

capacity of the coordinator may be not enough to accommodate

them all. Thus, a sampling protocol with space bounds for both

the sensing device and the coordinator is desired. The challenge

of such sampling protocol design derives from the combination of

the distributed setting and the unpredictability of streams. If only

one stream of data is considered, the problem is regressed to classic

reservoir sampling [33], which has been studied extensively in the

literature. Also, as long as the number of elements in each stream

of data is known in advance, the central coordinator can decide

how many samples are allocated to di�erent sensing devices, each

of which runs an instance of reservoir sampling.

To this end, we utilize the recent study in distributed streams [18]

and design an e�cient sampling protocol based on it. The basic idea

of this sampling protocol is to dynamically maintain events with

the smallest hash values on the coordinator. As long as the hashing

is uniform and random but not necessary to be cryptographic, the

events maintained in the coordinator are drawn uniformly from all

events already observed hitherto. In order to obviate unnecessary

network bandwidth consumption for the events which should be

discarded at the sensing devices locally, the coordinator broadcasts

to all sensing devices current global B-th smallest hash value τ ,

where B is the sampling budget. One strawman sampling protocol

is that the coordinator broadcasts the new value of τ every time it

changes. Since τ changesO (B logσ) times, the communication cost

between the coordinator and the sensing devices is O (KB logσ),
where σ denotes the total number of events sent to the coordinator,

K is the number of sensing devices. Cormode et al. proposed a

distributed sampling algorithm [18], which is proved to be optimal

in terms of communication cost, which is O (K logK/B σ + B logσ)

with high probability. We tailor it to �t the signature scheme in Sec.

3.3 in this paper as demonstrated follows.

The coordinator as well as the sensing devices maintain a variable

which represents which round the sampling protocol is in, and

the coordinator ensures that all devices are kept up to date with

this information. Initially, the sampling protocol begins at round

0. Suppose the sampling protocol is at round j. As we will see,

Algorithm 1: SP at sensing device k in round j

1 foreach event e do
2 i ← argmin

x ∈N
{h(e) ≥ 2

−x−1};

3 lki ← lki + 1;

4 if i ≥ j then
5 Forward e to the coordinator;

6 else
7 Discard e;

8 end
9 end

round j indicates a sample rate of 2
−j

. This protocol involves two

algorithms at the sensing device and the coordinator respectively.

Sensing device: On receiving a new event e , the sensing device

�rst computes which numeric interval in {Si } that h(e) falls in, and

updates the local counter associated with this set, where h(·) is a

uniform random hashing function shared by all the sensing devices

and the coordinator and. Let lki be the local counter for Si at device

k . Each sensing device and the coordinator maintain their own

local counters. The local counters at the sensing devices are for

the security issues only, which will be discussed in Sec. 5 and the

sampling protocol still works correctly without these counters. It

is worthy mention that all sensing devices and the coordinator use

the same hashing function. Suppose h(e) ∈ Si . If i ≥ j, the device

instantly forward event e to the coordinator; otherwise, the event

is discarded locally. Note that no events are bu�ered at the device

in any cases. The pseudo-code is shown in Algorithm 1.

Coordinator: The coordinator maintains queues {Qk
i } , each of

which corresponds to one numerical interval in {Si } of each sensing

device. Upon receiving an event e , the coordinator �rst computes i ,
such that h(e) ∈ Si , followed by comparing the value of i and j. In

the case of i < j, event e is discarded; otherwise, it is bu�ered at

queue Qk
i (suppose the event is from kth sensing device) followed

by updating both the counter associated with numerical interval

Si and the global counter д, which records the total number of

events bu�ered at the coordinator. At this moment, as long as the

value of the global counter д exceeds the budget limit B, all event

queues associated with Si are discarded, the global counter updates

accordingly and the sampling protocol advances to the next round

(i.e. j ← j + 1). The coordinator then signals all sensing devices to

promote to the newest round j . It is evident that coordinator bu�ers

at most B + 1 events all the time. Algorithm 2 is the pseduo-code

for the coordinator part of this sampling protocol.

4.2 Copping with Network Latency
In the last subsection, it is assumed that all communications be-

tween the coordinator and the sensing device are instantaneous.

However, it is not the case in real networks and the network la-

tency attributed to propagation and processing is inevitable. Con-

sequently, di�erent sensing devices and the coordinator miss syn-

chronization when the coordinator signal all sensing devices to

advance to the next epoch. To be more speci�c, at one single time

point, di�erent sensing devices may not stay at a same epoch. We

propose that one epoch identi�er is appended to each event sent

An IoT Data Communication Framework for Authenticity and Integrity IoTDI 2017, April 2017, Pi�sburgh, PA USA

Algorithm 2: SP at the coordinator in round j

1 foreach event e do
2 i ← argmin

x ∈N
{h(e) ≥ 2

−x−1};

3 k ← e .source;

4 if i ≥ j then
5 Qk

i .add(e);

6 l
′

i ← l
′

i + 1;

7 д ← д + 1;

8 while д > B do
9 Discard queues {∀ˆk,Q

ˆk
j };

10 д ← д − l
′

j ;

11 j ← j + 1;

12 Broadcast j to all sensing devices;

13 end
14 else
15 Discard e;

16 end
17 end

to the coordinator to resolve the confusion. The coordinator stores

the data of a particular epoch to the cloud only after the successful

reception of acknowledgments from all sensing devices to advance

to the next round. The coordinator should be able to bu�er events

from more than one epoch simultaneously.

Note that the coordinator also signals all sensing devices to

promote to the newest round (line 12, Algorithm 2). Lagged round

promotion does not impact the eventual correctness of the sampling

protocol, even though a lot of network bandwidth is wasted owe

to the transmission of events that should be discarded at devices

locally.

4.3 Signature Scheme
Besides the basic requirement to support partial data retrieval, the

choice of signature scheme is constrained by the fact that the coor-

dinator may discard events as shown in Algorithm 2. Hash chaining

can not coexist with the sampling protocol, because the coordina-

tor is allowed to discard events that are essential for the veri�er to

validate the received data.

Both the sensing device and the coordinator are sensitive to

space consumption. Since the space consumption for the events

themselves and the sampling protocol is the same, we concentrate

on the space cost for di�erent signature schemes. Moreover, at

the coordinator we assume that events are stored in the disk and

not consume memory space. We go into details on the space com-

plexity of di�erent signature schemes that are compatible with the

sampling protocol, as shown in TABLE. 3, where n is the number

of events monitored at one device and n′ denotes the maximum

value of n among all the sensing devices. The space complexity of

DTC at the coordinator is O(B logn′) because there are O(B) events

bu�ered at the coordinator and in the worse case each event is

appended O(logn′) with hash values for veri�cation. Following the

same line of reasoning in Sec. 3.2, the lack of bu�er space in the co-

ordinator may signi�cantly degrade the performance of DTC. GSC

Table 3: Space Complexity of signature schemes.

Signature Scheme Device Coordinator
Sign-each O(1) O(B)

DTC O(logn) O(B logn′)

GSC O(1) O(1)

only requires O (1) space at the coordinator because no message

digest is maintained at the coordinator.

4.4 Data Retrieval
The process for the data application to fetch data from the cloud

is very similar to the procedures described in Sec. 3.4, except for

that there may be not enough data in the cloud to satisfy the data

application. Nonetheless, the sampling protocol results in the cloud

containing sample blocks that correspond to successive numerical

intervals. Therefore, the data application can fetch any fraction of

data that is stored in the cloud.

5 SECURITY GUARANTEE
We use digital signatures to verify data integration and authenti-

cation. Any inconsistency in the veri�cation procedure indicates

data in the cloud untrusted. In the sampling protocol, each sensing

device maintains a counter to record the number of events that fall

in a certain sample block. At the end of each epoch, the sensing

device signatures both sampled events and all counters it maintains.

Meanwhile, each sensing device is required to sign its counters

even if it has not generated any event during an epoch. With the

signature, an attacker cannot manipulate, delete or produce fake

samples by modifying contents of events and counters without

being detected.

The sampling protocol also defends against dishonest coordina-

tors which execute protocols incompletely. A compromised coordi-

nator may stop monitoring sensing devices by intentionally setting

a negligible sample rate. In the veri�cation of this sampling proto-

col, this kind of violation will be easily detected since the supposed

�nal round is uniquely determined by the values of counters from

all sensing devices.

Theorem 5.1. The �nal round is uniquely determined by the values
of counters from all sensing devices.

Proof. Suppose the sampling protocol stops at round j at the

end of the epoch, which means all events associated with sample

block i are �nally stored in the cloud, where i ≥ j. Therefore,∑
k
lki = l

′

i (i ≥ j) and hence

д =

i≥j∑
i
l
′

i =

i≥j∑
k,i

lki ≤ B (1)

On the other hand, the necessary condition for sampling algorithm

to promote from round j − 1 to j is that

∑i≥j−1
i l

′

i > B. Since

∀i :
∑
k
lki ≥ l

′

i ,

i≥j−1∑
k,i

lki ≥

i≥j−1∑
i

l
′

i > B (2)

IoTDI 2017, April 2017, Pi�sburgh, PA USA X. Li et al.

Combining Eq. (1) and Eq. (2), it is not hard to reach

j = argmin

ĵ

i≥ ĵ∑
k,i

lki ≤ B

(3)

As a result, the �nal round and therefore the sample blocks should

be stored in the cloud can be computed from the counters. �

Inconsistency between the calculated stop round and the actual

stored sample blocks will lead to an alert. This operation prevents

the coordinator from neglecting events from a sensing device on

purpose since counters from the device indicate the number of

events that should be sampled by the coordinator.

Theorem 5.2. The counters determine the events that should be
stored in the cloud.

Proof. By Theorem 5.1, the counters can be leveraged to com-

pute the �nal round, which in turn determines the range of h(·)
that is �nally accepted in the cloud. Suppose the �nal round is j,
any event e satisfying h(e) ≤ 2

−j−1
should be stored in the cloud.

Consequently, the events that should be stored in the cloud are

deterministic. �

Theorem 5.3. Uniformity is auditable.

Proof. The sampling protocol picks events by random and uni-

form consistent hashing function which ensures uniformity. The

receiver can check the hash value of the retrieved event to testify

whether the sensing devices honestly insert event data to corre-

sponding sample blocks according to their hash value. A sensing

device increasing the sample rate by cheating on the hash value

can be easily detected. �

Note that the aforementioned theorems hold whether DTC or

GSC is leveraged.

6 EVALUATION
We conduct extensive trace-driven simulations and prototype ex-

periments using real dataset in this section.

6.1 Experiment Setup and Methodology
The dataset [3] used in this section includes a wide variety of data

collected from the sensing devices at three real homes from May 1st,

2012 through July 31st, 2012 (the data for May 31st, 2012 and June

26th, 2012 are missing). We select 7 sources of data comprising of

time series data and event-based data generated at sensing devices:

environmental information (including temperature and humidity,

etc.) about homeA, homeB and homeC respectively; electrical data

from dimmable and non-dimmable switches for homeA; two sets

of operational data on door and furnace on/o� for homeA; the data

from the motion detector located at homeA. We ignore the other 5

sources of data, which are from energy meter readings because en-

ergy meters in smart grid usually utilize dedicated communication

infrastructure to deliver meter readings [40]. Moreover, sizes of

these data are much larger than the 7 data sources aforementioned

and thus these data would overwhelm the whole system and few

events from the 7 smaller-sized data sources would be sampled if

the other 5 sets of data are included in the evaluation trace. We left

setting the weight for each sensing device as our future work.

In both the simulation and prototype emulation experiments,

non-cryptographic 64-bit xxHash [16] is leveraged as the hashing

function, which performs on the entire event report (which is one

line of record). We simulate the sampling protocol driven by the 7

sets of data listed above. In the simulation, each day is one epoch

and the 7 sources of data from the same day are replayed simul-

taneously. We vary the budget limit and evaluate its impact on

the simulation results. We implement the prototypes of DTC and

GSC for performance comparison. In the prototype experiment, we

�rst test the signing and verifying performance without sampling

protocol involved. We next conduct prototype experiment in a set-

ting where sampling protocol is involved. The second prototype

experiment focuses more on the potential maximal throughput of

tested signature schemes, since other impacting factors (e.g. space)

are explored in the prior prototype experiment. In the second proto-

type experiment, the events sent to the coordinator (which may be

discarded later at the coordinator) are used for signing performance

evaluation whereas the veri�cation algorithm is fed by the events

saved at the cloud.

We utilize OpenSSL [15] to implement two widely-used asym-

metric encryption algorithms, RSA [31] and DSA [4]. MD5 [1],

SHA-1 or SHA-256 [10] are leveraged as the message digest func-

tion. The prototype emulation experiments are conducted on a

quadcore@3.40G Linux desktop with 32GB memory and only one

core is used.

6.2 Simulation Result
We �rst conduct one micro-scale experiment to illustrate how the

sampling protocol proceeds when new events arrival, as depicted

in Fig. 5. We �x the budget limit to 500 events in this micro-scale

experiment. The three lines in Fig. 5 represent the number of events

bu�ered at the coordinator, sent to the coordinator by all the 7 sens-

ing devices and monitored at all sensing devices, respectively. The

three lines vary against time in one day (May 1st, 2012). Initially, the

number of events are the same for the three lines until the number

of bu�ered events at the coordinator reaches the budget limit. At

this time, approximately half bu�ered events are discarded, illus-

trated as the �rst vertical drop in Fig. 5. The events at coordinator

then are accumulated over time until the next sharp decrease. This

process repeats down to the end of this epoch. It is evident that the

space used at the coordinator never exceeds the budget limit. It is

worthy mention that the total number of events sent to the coordi-

nator grows slower as time proceeds, which is a desirable property

since the communication cost stays low even if much more events

are monitored. Moreover, it seems that the number of events sent to

the coordinator is more related to the budget than the total number

of monitored events. The formal proof is left as future work. Lastly,

it can be inferred from Fig. 5 is that the event occurrence rate is not

constant; otherwise, more trivial solutions such as �xing sampling

rate at each device are enough for the problem we are addressing

in this paper.

Next, we investigate how di�erent values of budget limit impact

the number of events eventually saved to the cloud. We present the

number of events saved at the cloud each day from May 1st, 2012 till

An IoT Data Communication Framework for Authenticity and Integrity IoTDI 2017, April 2017, Pi�sburgh, PA USA

0 2 4 6 8 10 12

x 10
4

0

1000

2000

3000

Time (s)

N
u

m
b

e
r

o
f

e
v

e
n

ts

Buffered

Sent

Monitored

Figure 5: One-day micro-scale experiment unveiling sam-
pling protocol.

0 20 40 60 80
0

2000

4000

6000

8000

Day

N
u

m
b

er
 o

f
ev

en
ts

Budget = 500

Budget = 1000

Budget = 4000

Monitored

Figure 6: Number of events saved in the cloud.

July 31st, 2012. with di�erent values of budget limit in Fig. 6. From

the description of the sampling protocol, we can infer that the �nal

number of saved events is not necessarily equal to the budget limit.

Fig. 6 shows that this sampling protocol utilizes approximately 75%

of the budget on average for di�erent budget values. In Fig. 6, we

also demonstrate that this sampling protocol works correctly in

the presence of drastic changes, as the number of events monitored

soars on the 40th day. In this case, the sampling protocol does not

violate the budget constraints.

The underlying foundation of our sampling protocol is that uni-

formly sampling is ensured. We will see the importance of unifor-

mity in one real application. The temperature sensor periodically

measures the environmental temperature and sends the sensing

data to the cloud for archiving purpose. We calculate the average

temperature outside homeA each day based on the sampled data

saved at the cloud. The ground truth is the mean of all temperate

sensing data from the temperature sensor. In order to illustrate the

need for uniformity, we calculate the average temperature by the

�rst 40 truncated sensing data (which is greater than the number of

saved data in the cloud on most days in this simulation experiment).

Fig. 7(a) demonstrates how estimated average temperature deviates

from the ground truth in respect to using our proposed sampling

protocol and using naive truncation. The budget limit is �rst �xed

to 500. It is obvious that the average temperatures calculated by

uniformly sampled data are much more accurate in re�ecting the

real data. In this example, the truncated data is measured in the

morning. Thus, the average temperatures calculated by truncated

data is smaller than real average temperatures on nearly all days

0 20 40 60 80 100
−30

−20

−10

0

10

Day

D
eg

re
e

Truncation

Uniform Sampling

(a) Deviation from the ground truth

(budget = 500)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

Relative error

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

Budget = 250

Budget = 500

Budget = 1000

(b) Impact of budget limit

Figure 7: Computing average temperature from data saved
in the cloud.

(only one day is an exception). We then evaluate how the budget

limit a�ects the accuracy of estimated average temperature. As ex-

pected, a greater value of budget limit yields more accurate results,

as illustrated in Fig. 7(b).

6.3 Emulation Experiments Without Budget
Limit

We conduct extensive prototype emulation experiments in this sub-

section. The e�ciency of the signature scheme greatly impacts the

adoption of sensing devices, since most sensing devices are resource-

constraint. As an indirect measurement of power consumption, we

evaluation the speed of signing under di�erent parameter settings.

We also evaluate the performance at the verifying phase. The data

applications may fetch data of hundreds or thousands of devices,

therefore the verifying speed is also critical for a scalable applica-

tion.

The 7 data sources each divided into 90 epochs are the input to

the singing phase of the signature scheme, whose output feeds the

verifying phase afterwards. In the �rst prototype experiment, no

budget constraints are involved. The parameter space consists of

the space available at the signer/veri�er as well as the sampling rate

of the data application. The space cost at both the signer and the

veri�er to host the events themselves is orthogonal to the choice

of signature scheme. Thus, the space cost in this subsection is

in particular referred to the memory footprint of the signature

scheme. It can be implied from the algorithm descriptions in Sec. 3

that the memory usage for all signature schemes mentioned in this

paper is a multiple of the message digest. In order to simplify the

presentation, we refer one unit of space cost as the memory space

used for storing one message digest. DSA is applied as the public

encryption/decryption algorithm and MD5 is leveraged to compute

the message digest in this subsection.

We measure the performance of DTC and GSC with given space

in the signer. To focus on the impact of the space issues at the

signer side, at �rst we allocate enough free space to the veri�cation

process. If DTC is used, once the bu�er in the signer is full, the

root node in the authentication tree is signed and the remaining

nodes are �ushed to the cloud to spare space for upcoming events.

Thus, lacking space in the signer may lead to multiple expensive

encryption operations in one epoch. Furthermore, the same number

IoTDI 2017, April 2017, Pi�sburgh, PA USA X. Li et al.

of decryption operations are also needed at the veri�er side. On

the other hand, for GSC the available space a�ects the resolution

of the sample blocks, rather than signing speed. Only one encryp-

tion operation is performed in a single epoch. Fig. 8 illustrates the

signing/verifying performance comparison between GSC and DTC

under varied space available at the signer. It is obvious that both

signing and verifying performance of DTC are capped by available

memory at the signer, whereas GSC runs at full speed all the time.

The sampling rate at the receiver side also a�ects the verifying

performance for both GSC and DTC, because it directly determines

the number of events to share the cost of encryption/decryption,

as depicted in Fig. 10, where higher sampling rate yields better

verifying throughput. Another observation from Fig. 10 is that

sampling rate also impacts GSC in terms of the space needed at

the signer to achieve maximal verifying throughput. Recall that

the available space in the signer de�nes the resolution of sample

blocks. The number of unused but veri�ed events decreases as the

resolution of the sample block improves. Suppose the receiver asks

for 10% data in the cloud. In the case where there are 2 units of

space in the signer, the receiver fetches and veri�es 20% unused data

because the �nest sample block contains 50% data. If the available

space increases to 3 units, the smallest sample block consists 25%

data and thus the unused data shrinks to 15%. The time wasted owe

to unused data becomes increasing prominent when the sampling

rate decreases. Therefore, smaller the sampling rate, more space

required at the signer. The good news is that as small as 7 units of

space are enough to support maximal verifying throughput when

the sampling rate is 1%.

Moreover, the verifying throughput varies with the space allo-

cated to cache veri�ed nodes in the authentication tree for DSC. In

our current prototype implementation, the veri�er stops caching

new veri�ed nodes if the bu�er is full. As expected, the performance

acceleration is more evident with more cached veri�ed nodes, as

illustrated in Fig. 9. It is interesting to note that before any of the

three lines in Fig. 9 reaches full speed, for a given �xed space at the

veri�er, the verifying throughput is higher when there is less space

available in the signer. This is because the locality of the cache

nodes favors higher refreshing frequency. When smaller space is

available at the signer, the number of jointly signed events is less

and thus the cached nodes are refreshed more frequently.

6.4 Emulation Experiments with Sampling
Protocol

From the the prototype experiment without budget limit, it seems

that the space requirement (logn units) at the signer is trivial, where

n is the number of event reports generated in one sensing device. If

the sampling protocol is utilized, the signing/verifying performance

is likely to be limited by the space available at the coordinator. The

spacial cost to host auxiliary authentication information is B logn,

where B could be very large. Suppose the space available at the

coordinator isC . It is equivalent to the situation where there are
C
B

units of space in the signer. Since we have already illustrated the

impact of space in one single signer in Fig. 8, how signing/verifying

throughput changes with varied available space in the coordinator

is not shown for brevity.

Budget 500 1000

Signature 115821 186619

Verify 35038 70296

Table 4: Simulation results on #events.

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3
x 10

6

Space available at the device

E
ve

nt
s

pe
r

se
co

nd

GSC sign
GSC verify
DTC sign
DTC verify

Figure 8: Thrpt. comp.

0 5 10 15 20 25
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

6

Space available at the data application

E
ve

nt
s

pe
r

se
co

nd

Sender space = 8
Sender space = 9
Sender space = 10

Figure 9: DTC rev. thrpt.

We focus more on potential maximal throughput of tested sig-

nature schemes. We suppose there is enough space at both the

signer and veri�er sides. The events sent to the coordinator are

used for signing performance evaluation whereas the veri�cation

algorithm is fed by the events saved at the cloud. The number of

events involved is listed in TABLE. 6.4.

Fig. 11 shows the throughput comparison between GSC and

DTC. We do not put results for the sign-each approach in this

�gure because its throughput is much slower than the other two

and we focus more on the visualization of more comparable results.

From all performance evaluation experiments, sign-each approach

is more than 50X slower than the other two. Since each day is

one epoch and there are only 7 sensing devices, there are only

90 × 7 = 630 encryption/decryption operations for both GSC and

DTC. For all the experiments conducted in this subsection, GSC

is faster than DTC in terms of both signing and verifying. This is

because DTC needs to perform the message digest function possibly

more than once per event, whereas GSC calculates the message

digest exactly once per event. We can verify this conjecture by

analyzing the performance comparison in Fig. 11. We can see that

performance gap between GSC and DTC becomes more prominent

when faster message digest function is applied. For example, the

throughput di�erent increases from 0.35M events per second to

0.7M events per second if MD5 replaces SHA256 when DSA is used

and the budget limit is 500. The throughput decreases when the

value of budget limit is reduced as implicated in Fig. 11, because the

same number of encryption/decryption operations are amortized

to fewer events.

7 RELATEDWORK
Wang et al. [34] rely on erasure-correcting code to ensure the secu-

rity of cloud data storage. They compute homomorphic tokens for

data blocks dispersed across distributed servers and use a challenge-

response protocol between users and the cloud to verify cloud data

correctness. However, their scheme is not practical for signing

sensing data samples. The set of data blocks that can be veri�ed is

pre-decided before data distribution while data applications deter-

mine which part of data to use in real time. The other reason is that

An IoT Data Communication Framework for Authenticity and Integrity IoTDI 2017, April 2017, Pi�sburgh, PA USA

1 2 3 4 5 6 7 8 9 10 11 12
104

105

106

107

Space available at the device

E
ve

nt
s

pe
r

se
co

nd

GSC

1 2 3 4 5 6 7 8 9 10 11 12
104

105

106

107

Space available at the device

E
ve

nt
s

pe
r

se
co

nd

DTC

1% 10% 50% 90% 100%

Figure 10: Verifying throughput comparison with di�erent
sample rate.

the veri�cation process can only be conducted by data owners in-

stead of people who use the data. Their follow-up work [36] enables

a third-party auditor to be a delegate for users to conduct cloud

data veri�cation. Their solution bases on Merkle Hash Tree. Our

proposed signature scheme, GSC, achieves higher throughput with

less overhead. GSC can be applied to a public audit to periodically

check integration and authentication of cloud data storage.

8 DISCUSSION AND FUTUREWORK
Di�erent sensing devices may send generated data to the coor-

dinator at vastly di�erent speed. The video surveillance system

[17] continuously generates tons of data whereas human-motion

detector [38] sends much less data occasionally. In order to avoid

starvation of devices, the sampling protocol discussed in this paper

can be easily generalized to allow weighted items. How to automati-

cally set weights for di�erent devices with little human intervention

would be our future work.

Our sampling and signature scheme can be also applied to other

areas besides IoT data storage. It is increasing important to monitor

networks at di�erent geographic locations in a scalable way [19].

Our sampling and signature scheme provides the opportunity to

relieve the burden of the network, where the local collector acts

as the coordinator and periodically transmits the sampled packets

to the global tra�c analytic. Since the sampled packets may be

transmitted over the Internet [19], DTC is no longer applicable

in this scenario where network switches send data at 10/40 Gbps.

The memory of switches cannot sustain to store such tremendous

amount of internal nodes of authentication tree in DTC.

In this paper, we do not discuss the network issues associated

with the sampling protocol, in which it is assumed that the commu-

nication between the coordinator and the device is instantaneous.

Even though the network latency does not impact the eventual

correctness of the sampling protocol, a lot of network bandwidth is

wasted owe to the transmission of events that should be discarded

at devices locally. In our future work, we plan to design a queuing

principle which prioritizes the coordinating messages to favor the

devices sending more events thus to reduce the network bandwidth

waste.

Fog computing is a new paradigm where small-scale cloud data-

centers are deployed at ISP network edge. Because their proximity

to end-users, VMs of fog computing can be leveraged as the coor-

dinator described in the sampling protocol. In this way, the end

users are not bothered to update their access point to support the

sampling protocol.

9 CONCLUSION
We summarize the new challenges of the IoT data communication

framework with authenticity and integrity and argue that existing

solutions cannot be easily adopted. We design a system aimed to

address these challenges. This system is able to uniformly sample

data from sensing devices and then securely store the data in the

cloud while respecting resource budget constraint. The sub-systems

in our paper symbiotically operate together and this system is

e�cient in terms of space and time, as is validated by extensive

simulation and prototype emulation experiments.

ACKNOWLEDGMENTS
The authors are supported by University of California Santa Cruz

startup funding and National Science Foundation Grant CNS-1701681.

The authors also thank anonymous IoTDI reviews for their con-

structive comments and suggestions.

REFERENCES
[1] 1992. The MD5 Message-Digest Algorithm. https://tools.ietf.org/html/rfc1321.

(1992).

[2] 2011. mHealth: New horizons for health through mobile technologies. http:

//www.who.int/goe/publications/goe_mhealth_web.pdf. (2011).

[3] 2013. http://traces.cs.umass.edu/index.php/Smart/Smart. (2013).

[4] 2013. DSA. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf. (2013).

[5] 2013. The Seagate 600 & 600 Pro SSD Review. http://www.anandtech.com/show/

6935/seagate-600-ssd-review/5. (2013).

[6] 2014. Sampling for Big Data. www.kdd.org/kdd2014/tutorials/t10_part1.pptx.

(2014).

[7] 2014. Samsung SSD 850 EVO 120GB, 250GB, 500GB & 1TB Review. http://www.

anandtech.com/show/8747/samsung-ssd-850-evo-review/8. (2014).

[8] 2015. http://www.crn.com/slide-shows/cloud/300077635/

the-10-biggest-cloud-outages-of-2015-so-far.htm/pgno/0/2. (2015).

[9] 2015. HVAC Monitoring, Energy Monitoring and Control. http://goo.gl/Ybq8Ai.

(2015).

[10] 2015. SHA-1. http://csrc.nist.gov/publications/�ps/�ps180-4/�ps-180-4.pdf.

(2015).

[11] n.d.. https://www.opensensors.io/. (n.d.).

[12] n.d.. Amazon S3 Pricing. https://aws.amazon.com/s3/pricing/. (n.d.).

[13] n.d.. eHealth. http://www.who.int/topics/ehealth/en/. (n.d.).

[14] n.d.. Nest. https://goo.gl/7uMdA1. (n.d.).

[15] n.d.. OpenSSL. https://www.openssl.org/. (n.d.).

[16] n.d.. xxHash. http://www.xxhash.com/. (n.d.).

[17] A. J. Brush, J. Jung, R. Mahajan, and F. Martinez. 2013. Digital neighborhood

watch: Investigating the sharing of camera data amongst neighbors. In Proc. of
ACM CSCW.

[18] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang. 2012. Continuous sampling

from distributed streams. JACM 59, 2 (2012).

[19] L. Elsen, F. Kohn, C. Decker, and R. Wattenhofer. 2015. goProbe: a scalable

distributed network monitoring solution. In Proc. of IEEE P2P.

[20] D. Evan. 2011. The Internet of Things, Cisco White Paper. https://www.cisco.

com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf. (2011).

[21] R. Gennaro and P. Rohatgi. 1997. How to sign digital streams. In Crypto.

[22] M. Gerla, E. Lee, G. Pau, and U. Lee. 2014. Internet of vehicles: From intelligent

grid to autonomous cars and vehicular clouds. In Proc. of IEEE WF-IoT.

[23] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. 2013. Internet of Things

(IoT): A vision, architectural elements, and future directions. Future Generation
Computer Systems 29, 7 (2013).

[24] T. Gupta, R. P. Singh, A. Phanishayee, J. Jung, and R. Mahajan. 2014. Bolt: Data

management for connected homes. In Proc. of USEIX NSDI.
[25] Y. Kim, J. Kang, D. Kim, E. Kim, P. K. Chong, and S. Seo. 2008. Design of a

fence surveillance system based on wireless sensor networks. In Proc. of the
Autonomics.

https://tools.ietf.org/html/rfc1321
http://www.who.int/goe/publications/goe_mhealth_web.pdf
http://www.who.int/goe/publications/goe_mhealth_web.pdf
http://traces.cs.umass.edu/index.php/Smart/Smart
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://www.anandtech.com/show/6935/seagate-600-ssd-review/5
http://www.anandtech.com/show/6935/seagate-600-ssd-review/5
www.kdd.org/kdd2014/tutorials/t10_part1.pptx
http://www.anandtech.com/show/8747/samsung-ssd-850-evo-review/8
http://www.anandtech.com/show/8747/samsung-ssd-850-evo-review/8
http://www.crn.com/slide-shows/cloud/300077635/the-10-biggest-cloud-outages-of-2015-so-far.htm/pgno/0/2
http://www.crn.com/slide-shows/cloud/300077635/the-10-biggest-cloud-outages-of-2015-so-far.htm/pgno/0/2
http://goo.gl/Ybq8Ai
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://www.opensensors.io/
https://aws.amazon.com/s3/pricing/
http://www.who.int/topics/ehealth/en/
https://goo.gl/7uMdA1
https://www.openssl.org/
http://www.xxhash.com/
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

IoTDI 2017, April 2017, Pi�sburgh, PA USA X. Li et al.

MD5 SHA1 SHA256
0

0.5

1

1.5

2

2.5

3
x 10

6

E
ve

nt
s

pe
r

se
co

nd

DSA signature

MD5 SHA1 SHA256
0

0.5

1

1.5

2

2.5

3
x 10

6

E
ve

nt
s

pe
r

se
co

nd

RSA signature

MD5 SHA1 SHA256
0

0.5

1

1.5

2

2.5

3
x 10

6

E
ve

nt
s

pe
r

se
co

nd

DSA verification

MD5 SHA1 SHA256
0

0.5

1

1.5

2

2.5

3
x 10

6

E
ve

nt
s

pe
r

se
co

nd

RSA verfication

GSC, Budget = 500 DTC, Budget = 500 GSC, Budget = 1000 DTC, Budget = 1000

Figure 11: Throughput comparison with di�erent parameter settings.

[26] J. Li, L. Zhang, J. K. Liu, H. Qian, and Z. Dong. 2016. Privacy-Preserving Public

Auditing Protocol for Low-Performance End Devices in Cloud. IEEE Transactions
on Information Forensics and Security 11, 11 (2016).

[27] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi,

Mike Dahlin, and Michael Wal�sh. 2011. Depot: Cloud Storage with Minimal

Trust. ACM Trans. Comput. Syst. 29, 4, Article 12 (Dec. 2011), 38 pages. DOI:
http://dx.doi.org/10.1145/2063509.2063512

[28] R. C. Merkle. 1987. A digital signature based on a conventional encryption

function. In Proc. of CRYPTO.

[29] S. Monterde. 2014. Cisco Technology Radar. (2014).

[30] K. Piotrowski, P. Langendoerfer, and S. Peter. 2006. How public key cryptography

in�uences wireless sensor node lifetime. In Proc of ACM SASN.

[31] R. L. Rivest, A. Shamir, and L. Adleman. 1978. A method for obtaining digital

signatures and public-key cryptosystems. CACM 21, 2 (1978).

[32] J. Scott, Bernheim B., J. Krumm, B. Meyers, M. Hazas, S. Hodges, and N. Villar.

2011. PreHeat: controlling home heating using occupancy prediction. In Proc. of
ACM Ubicomp.

[33] J. S. Vitter. 1985. Random sampling with a reservoir. ACM Trans. Math. Software
11, 1 (1985).

[34] C. Wang, Q. Wang, K. Ren, and W. Lou. 2009. Ensuring Data Storage Security in

Cloud Computing. In Proc. of IEEE IWQoS.

[35] C. Wang, Q. Wang, K. Ren, and W. Lou. 2010. Privacy-preserving public auditing

for data storage security in cloud computing. In Proc. of IEEE INFOCOM.

[36] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. 2011. Enabling public

auditability and data dynamics for storage security in cloud computing. IEEE
transactions on parallel and distributed systems 22, 5 (2011), 847–859.

[37] C. K. Wong and S. S. Lam. 1998. Digital signatures for �ows and multicasts. In

Proc. of IEEE ICNP.

[38] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N.

Futaba, and K. Hata. 2011. A stretchable carbon nanotube strain sensor for

human-motion detection. Nature nanotechnology 6, 5 (2011).

[39] Y. Zhang, L. Duan, and J. L. Chen. 2014. Event-driven soa for iot services. In Proc.
of IEEE SCC.

[40] J. Zheng, D. W. Gao, and L. Lin. 2013. Smart meters in smart grid: An overview.

In Proc. of IEEE GT.

http://dx.doi.org/10.1145/2063509.2063512

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Network Model
	2.2 Threat Model

	3 System Design
	3.1 Existing Signature Schemes
	3.2 Dynamic Tree Chaining (DTC)
	3.3 Geometric Star Chaining (GSC)
	3.4 Data Retrieval and Verification

	4 Incorporating Budget Limit
	4.1 Sampling Protocol Design
	4.2 Copping with Network Latency
	4.3 Signature Scheme
	4.4 Data Retrieval

	5 Security guarantee
	6 Evaluation
	6.1 Experiment Setup and Methodology
	6.2 Simulation Result
	6.3 Prototype Emulation Experiments Without Budget Limit
	6.4 Prototype Experiments with Sampling Protocol

	7 related work
	8 Discussion and Future Work
	9 Conclusion
	Acknowledgments
	References

