
An NFV Orchestration Framework for

Interference-free Policy Enforcement

Xin Li and Chen Qian

Department of Computer Science, University of Kentucky

Email: xin.li@uky.edu, qian@cs.uky.edu

Abstract—Network functions virtualization is a new paradigm
to offer flexibility of software network function processing on
demand. Policy enforcement satisfies network function policies
that requires flows to traverse through given sequences of
network functions. We summarize three desired properties of
virtual network function placement, namely policy enforcement,
interference freedom, and resource isolation. However, none of
existing solutions can satisfy all of them. In this paper, we
present a novel SDN-based NFV orchestration framework, called
APPLE, to enforce network function policies while providing the
above properties. We present detailed design considerations and
prototype implementation. We conduct experiments using repre-
sentative network topologies, traffic matrices, and policy chains.
The results from both prototype experiments and simulations
show that APPLE is resource efficient and can quickly react to
traffic changes.

I. INTRODUCTION

Network functions (NFs) play an important role in modern

computer networks. NF deployment is ubiquitous [39]: from

performance-improving applications (e.g. WAN optimizers,

proxies, and application gateways) to security appliances (e.g.

firewalls, IDS). It has been reported that the deployed network

functions in a typical network are often as many as routers and

switches [39] [38].

Traditionally, the network operators adopt proprietary hard-

ware middleboxes to provide NFs. The hardware middlebox

introduces large capital expenses as well as expensive op-

erational costs. To simplify network management, Network

Functions Virtualization (NFV) [20] has been proposed a new

paradigm to replace hardware middleboxes with software-

based NFs running on generic computing platforms. Besides

the great reduction in captital/operational expenses, NFV also

brings tremendous flexibility to both the network operators

and researchers with regards to the deployment, configuration,

launch, and cancel of network functions.

In a network, higher-layer applications or network operators

may specify NF policies that require traffic flows traverse

through given sequences of NFs called a policy chain (also

known as service chain). A network performs policy enforce-

ment by satisfying all NF policies of the flows in the network.

For example, a network operator may specify a policy that

requires all http traffic follow the policy chain: firewall →
IDS → web proxy.

Hardware-based NFs are statically deployed in a network.

To enforce polices, paths of flows may be changed in the data

plane so that each flow can traverse through the specified se-

quence of NFs by utilizing software defined networking (SDN)

[45] [34], called traffic steering. Though being straightforward,

traffic steering suffers from the following problems: 1) Flow

path changes cause interference to other network applications.

For example, traffic engineering may assign a path with

sufficient bandwidth to the flow. Changing its path may violate

the bandwidth guarantee; 2) Traffic steering introduces extra

path length. The situation is aggravated if middleboxes are

not properly placed in the network; 3) More forwarding rules

are installed at switches to support complex traffic steering

[34]. Switch memory such as TCAM is a power-hungry and

expensive resource; 4) Forwarding loops may occur due to

traffic steering [34].

NFV provides new opportunities to enable automatic and

flexible NF placement, configuration, and management. In

this work, we present a network-wide NFV orchestration

framework that automatically installs virtual network function

(VNF) instances to enforce policies. The proposed framework

provides the following properties.

1) Policy enforcement. The sequential order of NFs of a

flow required by network applications or operators must

hold.

2) Interference freedom. The framework should not change

the existing flow forwarding paths determined by other

network applications such as routing, access control,

and traffic engineering. Policy enforcement is completely

orthogonal to routing.

3) Isolation. Resource isolation requires every VNF instance

does not use the computing resource of others (e.g.,

memory), even if they are installed at a same physical

platform. It is desperately desired for both performance

and security concerns, especially for multi-tenant clouds

where hardware resources are shared by multiple entities.

CPU and memory isolation at a same machine can

typically achieved by encapsulating each VNF instance

into a virtual machine (VM).

The proposed NFV orchestration framework is called AP-

PLE (Automatic aPProach for poLicy Enforcement). APPLE

provides all three desired properties discussed above, namely

policy enforcement, interference freedom, and isolation of

VNF instances. APPLE estimates the NF demand of network-

wide flows and proactively installs VNF instances for potential

flows, in order to avoid long waiting time for booting. APPLE

aims on minimizing the hardware resources consumed by VNF

instances. VNF instances are contained in VMs to guaran-

Framework
Policy

Enforcement

Interference

Free
Isolation

StEERING [45] X x X

SIMPLE [34] X x X

PACE [24] x X X

CoMb [36] X X x

Stratos [19] X x X

E2 [32] X x X

VNF-OP [15] X x X

APPLE X X X

TABLE I
COMPARISON OF NF ORCHESTRATION FRAMEWORKS

tee isolation. We have implemented a prototype system of

APPLE using recently developed open-source software tools

including OpenStack [11], ClickOS [28], Open vSwitch [9],

and OpenDayLight SDN controller [10]. To our knowledge,

APPLE is the first implementation of a interference-free

NFV orchestration framework based on VMs.

The rest of this paper is organized as follows. We discuss the

related work in Sec. II. We introduce the overview of APPLE

in Sec. III. We detail the optimization engine and policy

enforcement approaches in Sec. IV and Sec. V respectively.

Implementation details are presented in Sec. VII. We conduct

trace-driven simulations and show the results in Sec. IX. We

provide some discussion in Sec. X and conclude this work in

Sec. XI.

II. RELATED WORK

Policy enforcement of hardware NFs mostly relies on traffic

steering. Two typical works are StEERING [45] and SIMPLE

[34]. Both of them use the SDN technology to forward flows

by assigned paths. As discussed, traffic steering may cause

interference to other network applications.

A number of NFV placement or orchestration frameworks

have been studied in the literature. PACE [24] proposes to

use smart VM placement to deploy NFs. However PACE does

not consider policy chains and hence cannot perform desired

NF policy enforcement. Stratos [19] and E2 [32] provide

efficient and scalable NVF provisioning by combining traffic

engineering and NF placement. It utilizes traffic steering to

enforce policies and hence is not interference-free. VNF-OP

[15] is a set of high-level optimization algorithms for VNF

placement towards various objectives. It does not provide

interference freedom either. In addition, CoMb [36] deploys

multiple VNF instances as threads in a physical machine to

reduce the installation time. However thread-based VNFs can-

not guarantee isolation. The overall comparison is summarized

in Table I. Also, a comprehensive survey about NFV can be

found in [27].

III. APPLE SYSTEM OVERVIEW

Network Model. APPLE uses the SDN paradigm [29]. All

physical nodes that host VNF instances are connected to one of

the SDN-enabled switches. When a flow needs to be processed

by a VNF, forwarding rules installed on the switch will guide

Fig. 1. Overview of APPLE

the packets of the flow to the VNF instance and continue

forwarding after receiving the packets again from the VNF

instance. A central controller obtains network information and

installs forwarding rules onto switches via standard APIs such

as OpenFlow [29].

The overview of APPLE is shown in Fig. 1. APPLE

introduces a few new applications, including the Optimization

Engine and Dynamic Handler, to the controller other than

existing applications such as traffic engineering and access

control. The rule generator computes the rules that are installed

to the data plane based on the inputs from applications. APPLE

also adds a middleware between the control plane and VMs,

called Resource Orchestrator. We present the components of

APPLE as follows.

APPLE host. Each physical node hosts multiple VNF

instances, which is also called an APPLE host. A virtual switch

(vSwitch), such as Open vSwitch [9], is installed in the node

to switch packets to different VNF instances, which is also

connected to the outside network.

VNF Instance. VNF instances run as VMs on physical n-

odes. VMs guarantee the CPU and memory resource isolation.

Optimization Engine. Like [26], it is a traffic-aware VNF

placement algorithm. It runs periodically to make adjustment

according to the large time-scale network dynamics. It takes

the traffic rate, forwarding path, and policy chain of each

flow, together with the available hardware resources, as input.

It computes the proper placement of VNF instances and the

particular VNF instances each flow is supposed to traverse.

The algorithm of the Optimization Engine focuses on opti-

mizing resource efficiency while preserving NF policies under

traffic dynamics. The Optimization Engine interacts with the

Resource Orchestrator to install VNF instances accordingly

and obtains the information about available resources at AP-

PLE hosts from the Resource Orchestrator. It also sends the

information about how new flows are assigned to different

VNF instances to the Rule Generator for the computation of

data plane forwarding rules.

Resource Orchestrator. It allocates sufficient resources

and launches VNF instances according to the result of the

Optimization Engine. In addition, it monitors the available

resource on APPLE hosts and reports this information to the

Optimization Engine.

Rule Generator. It gathers the outputs from different

control plane applications, including the Optimization Engine,

and generates the data plane forwarding rules. These rules are

installed at physical and virtual switches through the SDN

API.

Dynamic Handler. It may receive an overloading notifica-

tion from a APPLE host. It will then re-balance the workload

to resolve overloading by requesting the Rule Generator to

install new forwarding rules.

Design challenges. There are several challenges involved in

the design of APPLE: (1) VNFs consume power and contend

for hardware resources with production VMs. Thus, it is highly

motivated to find a resource-efficient way to place VNFs (e.g.,

minimizing the number of VNF instances), while enforcing

policies. (2) Traffic is highly dynamic. We should avoid

both under-provision during peak load and over-provision

during base load to balance the performance and efficiency.

However, the provision of VNFs happens in a much larger

time-scale. As a result, elastic provision cannot be leveraged

to resolve such small time-scale problem. We need to design

a scheme to combine proactive VNF provision and dynamic

load balancing to achieve the goal. (3) Proper forwarding rules

are required to be installed at physical switches and vSwitches,

such that all flows traverse the given order of NFs and other

network behaviors are retained. The challenge here is how to

efficiently use expensive TCAM memory while the semantics

are preserved.

IV. OPTIMIZATION ENGINE

The Optimization Engine may apply global optimization

that computes a VNF placement plan for all current flows

or online placement for any new flows. In this section we

focus on global optimization for all flows in the network.

This mechanism can be applied to ISP or data center networks

whose traffic amount and pattern are predictable [16] [13] [43].

Online algorithms are for our future research.

A. Traffic aggregation for scalability

The Optimization Engine of APPLE needs to decide VNF

placement for all flows whose number may be huge. Kandula

et al. [23] found that 100K flows arrive every second on a

1500-server cluster. To resolve the scalability problem, APPLE

aggregates traffic into equivalence classes. The flows having

the same path and policy chain are aggregated into a class.

Using classes as the granularity for the Optimization Engine

yields several benefits: 1) The input size of the Optimization

Engine can be reduced significantly, and hence the time to

solve the optimization problem is shorter. 2) Classes can

usually be expressed by wildcard rules. Using wildcard rules

instead of exact matching rules will save the TCAM memory

in the data plane; 3) Class-based aggregation can smooth the

variation of traffic.

The fact that aggregated flows show smaller variance was

found by existing work [30]. In addition, the smoothness of

aggregated traffic can be derived from the power law form of

mean-variance relationship (MVR) of traffic rate [21]. Due to

space limit, we skip the derivation here.

In this paper, each class is denoted as h ∈ H, where H

is the set of all classes. We use the recently developed

atomic predicate based analysis [44] [42] to classify flows into

equivalence classes. Detailed explanation can be found in [44]

[42].

B. Distribution of VNF processing to different instances

The flows within a same class do not necessarily traverse the

same sequence of VNF instances. With a centralized network-

wide view, APPLE can spatially distribute the workload such

that the responsibility of each VNF instance can be more

balanced. Load distribution is also important to handle jumbo

classes whose rates are beyond the capacity of any single VNF

instance.

C. Algorithm Inputs

VNF capacity. We use Capn to denote the capacity of an

instance of VNF n, whose metric is the number of packets

per second. APPLE can measure the capacity of each VNF

instance in advance, which is offline one-shot effort. Using

ClickOS [28], when we observe that the packet loss rate soars

rapidly, we consider this instance is overloaded.

Available Resource. Each VNF instance consumes hard-

ware resources in its APPLE host. The Optimization Engine

needs to ensure there are enough hardware resources to launch

new instances. We denote the available hardware resources

of the APPLE hosts connected to switch v as Av. The Opti-

mization Engine polls such information from the Resource

Orchestrator. We use Rn to denote a resource requirement

vector in which each element is the requirement of a type

of resource of VNF n.

Policies. Policies are specified by network operators or

applications. They describe the sequence of NFs that each class

of flows need to traverse in order. Ch =< c
j
h > represents the

policy chain for class h ∈ H, where c
j
h means the the jth NF

on the policy chain Ch.

Flow Paths. Forwarding paths are computed by control

plane applications. We use Ph =< pi
h > to donate the path,

where pi
h is the ith switch class h encounters.

Traffic Rate. It can be estimated by other applications [18].

Th captures the traffic rate of class h ∈ H.

D. Problem formulation and solving

Objectives. The high-level objective of the Optimization

Engine is to minimize the total hardware and power resource

usage. In this paper, we use the simplest abstraction of this

objective: minimizing the number of VNF instances installed

in the network. More complicated representation of this objec-

tive can also be supported by our system and is left for future

study.

Policy enforcement requires the following for each flow:

Notations Explanation

pi
h i-th switch on the path of class h

c
j
h j-th VNF on the policy chain of class h

di
h, j portion of class h processed in c

j
h connected to pi

h

σi
h, j cumulative portion of class h processed in c

j
h until pi

h

Th traffic volume of class h

Capn process capacity of VNF n

qv
n quantity of VNF n connected to switch v

Rn the resource requirement vector of VNF n

Av available resource of APPLE host connect to switch v

|P(h)| path length of class h

|C(h)| number of VNFs at the policy chain of class h

i(P,h,v) index of switch v on the path of class h

i(C,h,n) index of VNF n at the policy chain of class h

TABLE II
NOTATIONS IN THE OPTIMIZATION PROBLEM.

1) For each NF specified by the policy for a flow, at least

one instance is on the network path.

2) For any VNF instance n, there should be at lease one

instance of the VNFs succeeding n in the policy chain

connected to the same switch of n or a downstream

switches of the path.

The network topology is represented by a graph G = (V,E),
where V is the set of switches in the network. Let N denote

the set of all VNFs. The decision variable di
h, j indicates the

portion of traffic of class h to be processed in instances

connected to switch pi
h for VNF c

j
h. Another decision variable

qn
v ∈ {0,1,2, ...} quantifies the number of VNF instances

needed for VNF n connected to switch v. We also introduce a

new derived variable σi
h, j, which means the cumulative portion

of traffic that has been processed, from beginning to pi
h on

the network path for VNF c
j
h for class h. For the ease of

illustration, we also define a bunch of functions. |Ph|, |Ch| are

the length of Ph and Ch, respectively. i(P,h,v) gets the index

of switch v on the sequence Ph =< pi
h >. Likewise, i(C,h,n)

is the index of VNF n on the sequence of Ch =< c
j
h > . The

notations used in this optimization problem is listed in TABLE

II. The optimization formulations are stated as follows.

Minimize ∑
v∈V

∑
n∈N

qv
n (1)

s.t. σi
h, j = σi−1

h, j +di
h, j ∀h, i, j (2)

σi
h, j−1 −σi

h, j ≥ 0 ∀h, i, j (3)

σ
|P(h)|
h,|C(h)| = 1 ∀h (4)

∑
h:v∈Ph

Thd
i(P,h,v)
h,i(C,h,n) ≤Capn ×qv

n ∀v,n (5)

∑
n∈N

Rn ×qv
n ≤ Av ∀v (6)

qv
n ∈ {0,1,2,} ∀n,v (7)

0 ≤ di
h, j ≤ 1 ∀h, i, j (8)

Eq. (3) makes sure that the policy chain order is preserved,

as the second requirement in Sec. IV-D. Eq. (4) means that

100% traffic of class h need to be properly processed as

indicated by the policy chain. Eq. (3), together with Eq. (4),

enforces policies. Eq. (5) and Eq. (6) capture VNF capacity

limits and resource constraints.

Even though i(P,h,v) and i(C,h,n) in Eq. (5) seem to

make the optimization problem nonlinear, actually once the

input is given, the values of i(P,h,v) and i(C,h,n) are known

immediately, without solving the whole optimization problem.

Therefore, this optimization problem is an Integer Linear

Program (ILP). This optimization problem can be reduced

from Set Cover Problem, which is known to be NP-hard.

Furthermore, Dinur et al. [17] have proved that Set Cover

Problem cannot be approximated within
(

1−o(1)
)

· lnn, unless

P = NP, where n is the number of subsets. We apply LP

relation, an approximation technique, to reduce the complexity

and solve it by CPLEX [2] in our implementation. Our

experiments using real network topologies and traffic traces

show that the computation time is small enough (less than 3.1

sec for global optimization of a 79-switch network). Note that

other practical orchestration frameworks [36] [34] use similar

time to finish optimization and consider it fast enough for most

existing networks. For gigantic networks including hundreds

of switches, which are rare in practise, we plan to propose

heuristic algorithms to solve it in future work.

V. ENFORCING OPTIMIZATION RESULTS

Once getting the result from the Optimization Engine, AP-

PLE needs to enforce the decisions. The installation of VNF

instances are handled by the Resource Orchestrator as ordinary

VM placement using existing technology such as OpenStack

[11]. However, it is hard to infer the forwarding rules from the

result of spatial distribution di
c, j directly. Thus, we introduce

a new concept, sub-class, to help APPLE generate forwarding

rules.

A. Sub-class

Policy enforcement is on per-flow basis, even though the

Optimization Engine operates on classes. It needs to be deter-

mined which specific VNF instances to traverse for each flow.

Towards this goal, we define the aggregation of flows within

a class that traverse the same VNF instances as a sub-class,

denoted as s. ds
c represents the portion of traffic rate of sub-

class s in the overall traffic rate of class c. Clearly, ∑s ds
c = 1.

For each class, we enumerate all the possible VNF instance

sequences that enforce the policy chain and the assignment of

the responsibility for each sub-class is accepted as long as the

space distribution from the Optimization Engine is satisfied.

We propose two approaches to assign flows to different

sub-classes. The first one leverages consistent hashing. For

example, we have a class denoted by < 10.1.1.0/24 >, then

< 10.1.1.0/24,h ∈ [0,0.5) > represents a sub-class. If flows

are uniformly hashed to [0,1), this sub-class approximately

includes 50% flows of this class. However, current hardware

switches do not support programmable hash functions. Hence

we use an alternative way to determine the sub-class of each

flow in our current implementation. Following the previous ex-

ample, the sub-class can be represented by < 10.1.1.128/25>.

The drawback of this method is that it may need multiple

rules to represent a single sub-class, and hence increasing

TCAM memory cost. To reduce the TCAM consumption, we

design a novel data plane scheme called flow tagging, which

is presented in the following subsection.

B. Flow tagging

A tag is an identifer written to a packet header. We can

customize the header modification in SDN-enabled switches.

The unused bits in the packet header can be used as the tag

field, such as the 6-bit DS field and 12-bit VLAN ID (if

VLANs are not used).

The main idea of the tagging scheme is to avoid dupli-

cated classifications on physical switches, which consume

substantial TCAM resource. In the APPLE tagging scheme,

each packet contains two tag fields. One field is for the host

ID, which specifies the next host to process this packet. If

one packet has traversed all the required VNF instances, this

tagging field is Fin. The other field encodes sub-class ID

within a class. Sub-class ID only has local meanings, thus it

can be multiplexed by different classes. The Sub-class tagging

field remains unchanged in the network. Fig. 2 shows the data

plane framework when a packet arrives at a physical SDN

switch. Upon reception of a new packet, the switch needs to

check the host ID field. If host ID indicates one APPLE host

connected to the switch, it would forward the packet to the

APPLE host for NF processing; otherwise, the switch would

forwarding the packet to the correct next hop. If this field is

empty, it means that this packet just entered the network and

the switch should tag a sub-class ID first. After that, if the

packet is to be processed in any APPLE host connected to

the switch, the switch should forward it to the APPLE host;

otherwise, the packet should be tagged with the next host ID

that processes it.

Such semantics can be easily encoded in TCAM, when flow

table pipelining is supported. TABLE. III illustrates the TCAM

layout at the physical switch. Rules of other applications are

stored in the next table. Here, the sub-class matching rules

are a bunch of wildcard rules to achieve the target distribution

computed by the Optimization Engine, as the second method

pointed in Sec. V-A. For switches not supporting pipeline

processing, the semantics can still be retained by the cross-

product of the two tables, but the TCAM consumption would

increase. Note that the classification rules are just installed at

the corresponding ingress switch for each sub-class to reduce

TCAM consumption.

Forwarding rules are also needed in vSwitch embed-

ded in APPLE hosts to direct packets to desired VNF in-

stances. The matching rule is based on three tuples, <
IncomePort,class,sub− class >, where class is specified by

matching rules. A packet may traverse multiple VNF instances

in one APPLE host, and IncomePort is enough to identify

which VNF instances the packet has traversed. (We assume

that a packet does not traverse a same instance twice.) We

use both class and sub-class IDs to distinguish different sub-

classes. Note that sub-class IDs are only adjusted at the ingress

Match host ID field?

Empty Tag? Process here?

Other App

Classification

Forward to Apple Host
Y

N

N

Y
Tag Sub-class ID

Y

Tag host ID

N

For each incoming packet

Fig. 2. Data plane framework at an SDN switch.

Type Host ID field Match Action

Host match Host ID * Fwd to APPLE host

Classification
Empty Sub-classes

Tag sub-class ID,
Fwd to APPLE host

Empty Sub-classes

Tag sub-class ID,
Tag host ID,

Go to next table

Pass by * * Go to next table

TABLE III
LAYOUT OF TCAM AT PHYSICAL SWITCHES

switch. When the packet leaves an APPLE host, it also needs

be tagged to indicate the next APPLE host to process it.

Since we can also install production VMs in APPLE hosts, the

vSwitch adopts a similar tagging scheme and the processing

pipeline to store rules of other applications. One difference

is that IncomePort is enough to distinguish whether a packet

has been tagged or not: the packets from the ports connect to

production VMs are not tagged yet. Fig. 3 gives a concrete

example describing how tagging scheme works.

VI. INCORPORATING TRAFFIC DYNAMICS

There are two kinds of traffic dynamics which are different

in granularity. The large time-scale traffic dynamic shows clear

daily or weekly patterns [16]. More importantly, the traffic

changes slowly, which can tolerate long VNF installation time.

For this kind of traffic dynamics, it can be easily handled

by periodically running the Optimization Engine and placing

VNF instances accordingly. For planned traffic changes, such

as VM migrations, we can also pre-install VNF instances to

enforce policies.

The difficult part is to efficiently handle small time-scale

traffic dynamics, because the traffic changing rate is both fast

and vigorous. In this paper, we propose another mechanism

to adapt to the traffic dynamics quickly, called fast failover.

The core idea is to temporally re-balance the distribution of

sub-classes to relieve the overloaded VNF instance. Since

overloading is transient, the distribution will roll back to the

normal state when the VNF instance is no longer overloaded.

Fast failover can react quickly to small time-scale traffic

dynamics, because it only temporarily changes the TCAM

ip1 -> ip4

ip2 -> ip4

ip3 -> ip4

 FW IDS Proxy

WAN Optimizer

 FW

 FW IDS

S1 S2

vSwitch

Proxy
WAN

Optimizer

ip3

ip1

ip2

vSwitch

A1 A2

ip4

Host Tag SrcIP Action
A1

Empty
Empty

*

* Fwd to A1
ip1 Tag sID, Fwd to A1
ip2 Tag sID, Tag A2, Next table
* Next table

SrcIP Action
...
ip1

ip2

ip3

...

...
Fwd to S2
Fwd to S2
Fwd to S2

...

Host Tag SrcIP Action
A2

Empty
*

* Fwd to A2
ip4 Tag sID, Tag Fin, Next table
* Next table

SrcIP Action
...
ip1

ip2

ip3

...

...
Fwd to H3
Fwd to H3
Fwd to H3

...

H1

H2

VM1

H3

In Port SrcIP Action
Port1

Port2

Port3

Port2

Port4

ip1 Fwd to Port2

ip1 Fwd to Port3

ip1 Tag A2, Fwd to Port1

ip3 Tag Fin, Fwd to Port1

ip3 Tag sID, Fwd to Port2

sID
1
1
1
1
*

In Port SrcIP Action

Port1

Port2

Port1

Port3

ip1 Fwd to Port2

ip1 Tag Fin, Fwd to Port1

ip2 Fwd to Port3

ip2 Tag Fin, Fwd to Port1

sID

1

1

1

1

xxx
xxxxxx

xxx
xxx

xx
xx
xx

xxx
xxx
xxx

xx
xx

x
x
x
xx
xx
xx

xx
xxxxx

xxx
xxx

xxx
xxx
xxx

xxx
xxx

xx
xx
xxxx
xx
xxx
xxx
xxx xx

xxxxx
xxx
xxx

xx
xx
xx

xxx
xxx
xxx

xx
xx

xx
xx
xx
xxx
xxx
xxx

1

2 3 4

1

2 3

Fig. 3. Illustration of three common scenarios for tagging scheme. There are 3 classes, and they have the same path, S1→ S2. The classes can be distinguished
by the srcIP field. Each class only has only one sub-class (denoted as sID in the figure). The traffic ip1 → ip4 represents the scenario where the packets
traverse multiple APPLE hosts. The traffic ip2 → ip4 represents the scenario where the packets are processed in APPLE hosts not connected to the ingress
switch. The traffic ip3 → ip4 represents the scenario where the packets originate within an APPLE host.

matching rules and installs light-weight ClickOS instances,

both of which happen in tens of milliseconds. When a VNF

instance is overloaded, it will send an overloading notification

to the Dynamic Handler. The Dynamic Handler in turn will

set the workload of all sub-classes that traverse this VNF

instance to half as much as before overloading and spread

the other half to the least loaded sub-classes within a same

class. If such re-balance is expected to result in overloading

of another VNF instance, the Dynamic Handler installs new

ClickOS instances to create new sub-classes to absorb traffic

dynamics. Also, when a VNF instance is no longer overloaded,

the newly installed ClickOS instances are cancelled to save

hardware resources. Fig. 4 illustrates the steps to achieve

fast failover for a particular example, where the firewall is

ClickOS-based. In this example, a new sub-class is created

and a new ClickOS VM is initiated. Initially, there are two

IDS and one firewall instances on the path. When the master

IDS instance is overloaded, APPLE builds a new sub-class by

installing a new firewall to accommodate traffic from previous

sub-class.

VII. PROTOTYPE IMPLEMENTATION

A. ClickOS VM Initiation

We have successfully implemented a prototype system of

APPLE using recently developed open-source software tools

including OpenStack [11], ClickOS [28], Open vSwitch [9],

and OpenDayLight SDN controller [10]. Fig. 5 shows the

step-by-step procedures to initiate a new ClickOS [28] VM

for a VNF instance. In our system, the central controller is a

stand-alone application that calls services provided by other

Mater IDS

S2

vSwitch

Failover IDS

2

FW

vSwitch

S3S1

Controller

New FW

S4

Orginal

Path

Failover

Path

�����
�

�
�

Fig. 4. Steps of fast failover for a sub-class whose policy chain is FW →
IDS: (1) Overloaded VNF instance sends an overloading notification. (2) New
ClickOS instances are initiated. (3) Controller installs forwarding rules for the
new sub-class. (4) Update rules to forward half traffic to the new sub-class.

orchestration softwares, Openstack [11] and Opendaylight

controller [10], via their REST APIs to manage the system.

It needs to be specially pointed out why Openstack delegates

the networking part to Opendaylight, rather than managing

the networking itself. An Openstack controller contains a

component called Neutron, which is responsible for the cre-

ation, configuration and management of the embedded virtual

network. However, Neutron exposes no APIs for the users

to install customized forwarding rules to Open vSwitches [9]

used in APPLE hosts. On the other hand, if we manually set

Fig. 5. Implementation of initiating a new ClickOS VM for a VNF instance.

Opendaylight as the controller for Open vSwitches, Openstack

will seize control of Open vSwitches intermediately, in order

to ensure the connectivity of the VMs. The solution is to

explicitly configure that Opendaylight handles the networking

for Openstack. When there is any new VM initiation request,

Openstack notifies Opendaylight to prepare the networking via

REST API (Step 2). Opendaylight is more than an OpenFlow

controller. It is a platform integrating both customized North-

bound and South-bound APIs for control applications and

network devices respectively. In Step 3, Opendaylight calls

OVSDB [33] South-bound RPC to create a new port on the

Open vSwitch. Since Xen VMs do not support Open vSwitch

directly, we add a Linux Bridge [6] between one Xen [14] VM

and the Open vSwitch (Step 4). Augmented with the network-

ing information, especially that used for configuring virtual

NIC, from Opendaylight (Step 5), Openstack leverages libvirt

driver [5] to create a new VM (Step 6). After that, the newly

created VM fetches the ClickOS image from Openstack and

installs it (Step 7). Once APPLE is notified the completion of

the VM creation (Step 8), it configures the ClickOS VM into

the desired VNF through a customized tool describe in [28]

(Step 9). Finally, APPLE proactively installs the forwarding

rules in the Open vSwitch by calling Opendaylight’s REST

API (Step 10&11).

For normal VMs other than ClickOS, the procedures to

initiate them are almost the same. The only different is that in

Step 9, generic configuration tools are utilized (e.g. the tools

from Openstack).

B. Overloading Detection

Different VNFs have their own metrics to define overload-

ing. In this paper, we do not use general but expensive load

monitoring tools (e.g. Intel Performance Counter Monitor API

[3]). We find that for most of the VNFs, the performance

is closely related to the packet receiving rate, but not the

packet size, as illustrated by Fig. 6 which shows how the

loss rate changes for a ClickOS VM that is configured as

a passive monitor. Based on measurement results, we set a

proper threshold to define overloading. Moreover, it is very

convenient to get the packet receiving rate by periodically

polling the packet counters of Open vSwitches. In the current

implementation, we poll the per-port packet counters instead

of the per-flow packet counters, because from our experiment

we find that the per-port counters update almost instantly while

the per-flow counters update approximately every 1 second.

VIII. PROTOTYPE EVALUATION

A. Experiment Setup

We install the all-in-one Openstack (Liberty release), Open-

daylight (Lithium release), Xen Hypervisor (version 4.4.2) and

Open vSwitch (version 2.0.2) on a same VirtualBox VM with

quad cores@3.4G and 8GB memory. Two network namespaces

[7] in Dom0 and all Xen VMs are connected to a same Open

vSwitch. Here, network namespaces, light-weight containers,

are created to emulate production hosts or VMs. One network

namespace sends packets to the other one via a ClickOS VM

that is configured as a passive monitor.

B. ClickOS VM Setup Time

Even though the ClickOS VM can be booted on a Xen

Hypervisor in 30 ms as stated in [28], our prototype experi-

ment indicates the booting time is much longer if Openstack

is involved. Since the setup time is hard to record directly, we

approximate it by measuring the duration which the throughput

drops to zero when we emulate failover: new forwarding rules

are installed on the Open vSwitch (which consumes only

negligible time, as little as 70ms) right before ClickOS VM

creation, meanwhile the namespaces are sending UDP packets

(Fig. 7). We conduct this experiment 10 times. The approx-

imate booting time ranges from 3.9 seconds to 4.6 seconds,

with an average of 4.2 seconds. The main reason for the longer

booting time is that Openstack and Opendaylight consume

substantial time to orchestrate and prepare the networking

before actually initiating a new VM (Step 1 - Step 5).

C. Waiting For Five Seconds

One solution to obviate the overhead introduced by failover

is to change the forwarding rules after the complete creation of

the ClickOS VM. In this subsection, we modify the forwarding

rules on the Open vSwitch 5 seconds after we send the VM

initiation request to Openstack via REST API. According to

our previous VM setup time measurement, 5 seconds is enough

to completely boot a new ClickOS VM.

In this subsection, we measure the overhead of failover for

TCP and UDP flows, by using Iperf [4] and Netcat [8] to send

UDP packets and to transfer a 20MB file via TCP, respectively.

We conduct both experiments 10 times. As expected, there is

no overhead associated with failover. For all 10 times of the

UDP experiment in which we send 1500-Byte UDP packets at

10Kpps, the loss rate for the UDP flow is always 0%. Fig. 8

shows the CDF plot of the time to transmit a 20MB file with

and without failover, which indicates that failover does not

bring extra overhead. The performances of the three situations

in Fig. 8 are approximately the same and their differences are

due to the statistical fluctuation.

D. Reconfiguring Existing VMs

Even though the solution in Sec. VIII-C introduces no

performance degradation, the 5-second waiting time constrains

the flexibility of the system to adapt to network dynamics. To

this end, we propose to reconfigure existing ClickOS VMs to

save the booting time. The micro-measurements shows that the

time to install forwarding rules is 70ms and reconfiguration

only takes 30ms. We conduct a similar experiment to Sec.

VIII-C. The only difference is that we just reconfigure an

existing ClickOS VM rather than initiating a new one. Still,

the UDP packet flow rate is 0% for each time of the UDP

experiment. There is also no noticeable difference in TCP

performance (Fig. 8).

E. Overloading Detection

One namaspace use pktgen [31] to send 1500-Byte UDP

packets to another one via a ClickOS instance that is config-

ured as a passive monitor. The passive monitor is viewed as

being overloaded if the receiving packets rate is greater than

8.5 Kpps. The distribution will roll back to the normal state

if the packets rate drops to 4 Kpps or lower. Fig. 9 illustrates

how fast our system detects overloading. Initially, the source

sending rate is 1 Kpps. To mimic network dynamics, the

source sending rate soars to 10 Kpps. The overloading is

immediately detected. Therefore, another ClickOS instance

is quickly configured as a passive monitor and the traffic is

evenly split to the two passive monitors. After 5 seconds,

the source sending rate becomes 1 Kpps again, which causes

the network rolls back to the normal state. During the whole

process, the packet loss is 0%.

IX. SIMULATION EVALUATION

We perform extensive simulations using real traffic trace

data and real network topologies.

A. Methodology

Topology and data set. We use three representative topolo-

gies for campus network, enterprise network, and data center

network representatively. For the campus network, we use

internet2 research network (12 nodes and 15 links). Time-

varying traffic matrices for internet2 are provided in [1], which

consist of snapshots of 12 × 12 traffic matrices. We adopt

the totem data set [41] to represent enterprise network. It

contains an intradomain network, GEANT (23 nodes and 74

links) and associated time-varying traffic matrices. We use a

2-tier campus data center network, UNIV1 (23 nodes and 43

links) [16]. In this data set, due to the lack of traffic matrices,

we replay the corresponding trace between random source-

destination pairs. To illustrate that the Optimization Engine is

scalable even for large topologies, we also use a Rocketfuel

router-level ISP topology, AS-3679 [40]. The traffic matrices

for AS-3679 are synthesized using FNSS tools [35].

Using Internet2 and GEANT datasets, we combine 672

snapshots of traffic matrices for each topology. We run the

Network Function Core Required Capacity ClickOS

Firewall 4 900Mbps X

Proxy 4 900Mbps x

NAT 2 900Mbps X

IDS 8 600Mbps x

TABLE IV
VNF DATA SHEETS

Topology Nodes Links Time

Internet2 12 15 0.029 second

GEANT 23 74 0.1 second

UNIV1 23 43 0.235 second

AS-3679 79 147 3.013 seconds

TABLE V
AVERAGE COMPUTATION TIME OF DIFFERENT TOPOLOGIES.

Optimization Engine, whose traffic matrix input is the mean

value of the 672 snapshots. After that, we place VNFs in

the network according to the result from the Optimization

Engine. At last, we replay all the traffic matrices in time

order and APPLE will react to traffic changes during this

process. Likewise, for UNIV1, we generate the time-varying

traffic matrices, from the real trace. Each snapshot lasts for

one second. The rest steps are the same with the other

two topologies. For each topology, we conduct experiments

multiple times with different traffic matrices.

Policy chains. Due to the lack of publicly available infor-

mation on NF related policies, we synthesize network function

policies based on real-network study by [37] and case studies

[12]. The policy chains are the sequences of 4 different NFs:

firewall, proxy, NAT and IDS.

VNF specifications. The information on capacity and re-

source requirements for each NF is from the survey in [15],

which is listed in TABLE .IV. We also assume that the firewall

and NAT are implemented in ClickOS, while the proxy and

IDS are contained in normal VMs. We assume that there are

64 cores at each APPLE host.

Metrics. We measure the following metrics: TCAM and

hardware consumption, the algorithm computation time, and

packet loss ratio during traffic dynamics.

B. Computation Time

Short computing time is crucial to timely VNF provision.

We solve the optimization problem discussed in Sec. IV-D

by CPLEX [2] on a quadcore@3.40G desktop with 16GB

memory. TABLE. V compares the average time to solve the

problem for different topologies. As we can see, for small

and medium topologies (Internet2, GEANT and UNIV1), the

Optimization Engine is fast: the computation time is less than

1 second. Even for the large topology (e.g. AS-3967), the

computation time is acceptable.

C. TCAM Usage

By leverage the tagging scheme, the TCAM consumption

is reduced. Fig. 10 gives the boxplot of the TCAM usage

reduction ratio compared to that without tagging scheme, for

three topologies under different traffic matrices . As we can

see, there is a least 4X reduction for all three topologies.

The reduction ratio for UNIV1 topology is more impressive

14 16 18 20 22 24 26
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
P

a
c
k
e

t
lo

s
s
 r

a
ti
o

Throughput (kpps)

500 Byte/pkt

1500 Byte/pkt

Fig. 6. Performance of VNF

0 2 4 6 8 10
0

50

100

150

Time (Sec)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Fig. 7. ClickOS booting time

1.45 1.455 1.46 1.465 1.47 1.475
0

0.2

0.4

0.6

0.8

1

Transmission time less than (Sec)

F
ra

c
ti
o

n
 o

f
e

x
p

e
ri
m

e
n

t
ti
m

e
s

TCP failover (new VM)

TCP failover (reconfiguration)

TCP no failover

Fig. 8. Distribution of file TX time

0 1 2 3 4 5 6 7
0

20

40

60

80

100

120

140

160

180

200

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (Sec)

Source

Original MB

Failover MB

Fig. 9. Illustration of fast failover

4

6

8

10

12

14

16

18

20

Internet2 GEANT UNIV1

T
C

A
M

 r
e

d
u

c
ti
o

n
 r

a
ti
o

Fig. 10. TCAM usage reduction by tagging

Internet2 GEANT UNIV1
0

100

200

300

400

500

600

700

800

C
P

U
 C

o
re

 u
s
a

g
e

APPLE

Ingress

Fig. 11. Avg. CPU Core usage

than the other two, because traffic exploits multi-paths in data

center networks. Therefore, we are more motivated to tag these

traffic at their ingress switch, rather than match them on all

multi-paths, resulting in less TCAM consumption.

D. Hardware Resource Usage

Since APPLE is the first VM-based orchestration framework

that introduces no interference to the network, we compare

the hardware resource usage for APPLE with an alternative

strawman solution called ingress, which consolidates all the

VNFs of the policy chain in the ingress switch and enforce

policy there for each class. Fig. 11 plots the hardware usage for

the two solutions. There is 4X reduction for internet2 and 2.5X

reduction for GEANT. This benefit comes from the resource

multiplexing between different classes. The gap in UNIV1

is not that significant, because UNIV1 only has two core

switches. Therefore, the limited hardware capacity at the core

switches force APPLE to place VNFs at the ingress switches.

E. React to traffic changes

With fast failover, APPLE can quickly react to traffic

changes with low packet loss rate. Fig. 12 depicts the packet

loss rate over time for three different topologies. In this plot,

we compare APPLE with fast failover to APPLE without fast

failover. Thanks to fast failover, the packet loss rate remains

much lower for all three topologies even in the face of fiercely

changed traffic. This plot illustrates the ability of fast failover

to absorb traffic burst efficiently. In the mean time, only a few

new ClickOS instances are installed to support fast failover.

The average additional cores to support fast failover is less

than 17 for all topologies.

X. DISCUSSIONS

Some NFs may change the packet headers, which makes

sub-class classification invalid. If such NFs are in the network,

we can tag the global sub-class identification in the affected

packets and the forwarding rules would match on such field

to address this problem. Due to the page limit, we skip the

detailed explanation of the above discussions.

When VNF instances processing packet, they consume mul-

tiple hardware resources (e.g. CPU cycles, NIC bandwidth).

However, current VM hypervisor’s resource scheduler only

considers how to statically fairly share CPU and memory [22].

To integrate a max-min fair multi-resource scheduler [25] for

policy enforcement would be our future work.

XI. CONCLUSION

APPLE is the first implementation of an NFV orchestration

framework based on VMs that satisfies three requirements,

namely policy enforcement, interference freedom, and re-

source isolation. APPLE introduces additional functional com-

ponents to current SDN controller and middleware between the

control plane and data plane. APPLE applies an optimization

engine to determine VNF placement and a flow tagging

scheme to reduce TCAM consumption. We present detailed

prototype implementation of all APPLE components. Results

from both implementation and simulations using real network

topologies and traffic matrices show that APPLE satisfies

desired properties of VNF deployment.

XII. ACKNOWLEDGEMENT

The authors are supported by University of Kentucky Col-
lege of Engineering Faculty Startup Grant and National Sci-
ence Foundation grant CNS-1464335. The authors also thank

0 500 1000 1500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Timeseries

without failover

with failover

(a) internet2

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Timeseries

without failover

with failover

(b) GEANT

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Timeseries

without failover

with failover

(c) UNIV1

Fig. 12. Packet loss rate over time for APPLE with and without fast failover.

anonymous ICDCS reviews for their constructive comments
and suggestions.

REFERENCES

[1] The abilene observatory data collections. http://www.cs.utexas.edu/
∼yzhang/research/AbileneTM/.

[2] Ibm ilog cplex optimizer. http://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/.

[3] Intel perf. counter mon. https://goo.gl/MCIhEE.

[4] Iperf. https://iperf.fr/.

[5] Libvirt virtualization api. http://libvirt.org/.

[6] Linux bridge. http://www.linuxfoundation.org/collaborate/workgroups/
networking/bridge.

[7] Linux network namespace. http://man7.org/linux/man-pages/man8/
ip-netns.8.html.

[8] Netcat: the tcp/ip swiss army. http://nc110.sourceforge.net/.

[9] Open vswitch. http://openvswitch.org/.

[10] Opendaylight. https://www.opendaylight.org/.

[11] Openstack. http://www.openstack.org/.

[12] Service function chaining use cases in data centers. http://datatracker.
ietf.org/doc/draft-ietf-sfc-dc-use-cases/.

[13] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards
predictable datacenter networks. In Proc. of SIGCOMM, 2011.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
ACM SOSP, 2003.

[15] M. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. On orchestrating
virtualized network functions. In Proc. of IEEE/ACM/IFIP CNSM, 2015.

[16] T. Benson, A. Akella, and D. Maltz. Network traffic characteristics of
data centers in the wild. In Proc. of ACM IMC, 2010.

[17] I. Dinur and D. Steurer. Analytical approach to parallel repetition. In
Proc. of ACM STOC, 2014.

[18] A. Feldmann et al. Deriving traffic demands for operational ip networks:
Methodology and experience. In Proc. of ACM SIGCOMM, 2000.

[19] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, A. Akella, and V. Sekar. Stratos: A network-aware or-
chestration layer for virtual middleboxes in clouds. arXiv preprint

arXiv:1305.0209, 2013.

[20] R. Guerzoni et al. Network functions virtualisation: an introduction,
benefits, enablers, challenges and call for action, introductory white
paper. In SDN and OpenFlow World Congress, 2012.

[21] A. Gunnar et al. Traffic matrix estimation on a large ip backbone: a
comparison on real data. In Proc. of the ACM IMC, 2004.

[22] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforcing
performance isolation across virtual machines in xen. In Middleware.
2006.

[23] S. Kandula et al. The nature of data center traffic: measurements &
analysis. In Proc. of the ACM IMC, 2009.

[24] L. E. Li et al. Pace: policy-aware application cloud embedding. In Proc.

of IEEE INFOCOM, 2013.

[25] X. Li and C. Qian. Low-complexity multi-resource packet scheduling
for network functions virtualization. In Proc. of IEEE INFOCOM, 2015.

[26] X. Li and C. Qian. Traffic and failure aware vm placement for multi-
tenant cloud computing. In Proc. of IEEE/ACM IWQoS, 2015.

[27] X. Li and C. Qian. A survey of network function placement. In Proc.

of IEEE CCNC, 2016.
[28] J. Martins et al. Clickos and the art of network function virtualization.

In Proc. of USENIX NSDI, 2014.
[29] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 2008.

[30] R. Morris and D. Lin. Variance of aggregated web traffic. In Proc. of

IEEE INFOCOM, 2000.
[31] R. Olsson. Pktgen the linux packet generator. In Proc. of the Linux

Symposium, 2005.
[32] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,

and S. Shenker. E2: A framework for nfv applications. In Proc. of ACM

SOSP, 2015.
[33] B. Pfaff and E. B. Davie. The open vswitch database management

protocol. Technical report, RFC 7047, December, 2013.
[34] Z. A. Qazi and et al. Simple-fying middlebox policy enforcement using

sdn. In Proc. of ACM SIGCOMM, 2013.
[35] L. Saino, C. Cocora, and G. Pavlou. A toolchain for simplifying network

simulation setup. In Proc.of SIMUTOOLS, 2013.
[36] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and

implementation of a consolidated middlebox architecture. In Proc. of

USENIX NSDI, 2012.
[37] V. Sekar et al. The middlebox manifesto: enabling innovation in

middlebox deployment. In Proc. of ACM HotNets, 2011.
[38] J. Sherry et al. Rollback-Recovery for Middleboxes. In Proc. of ACM

SIGCOMM, 2015.
[39] J. Sherry and S. Ratnasamy. A Survey of Enterprise Middlebox

Deployments. Technical report, EECS, UC Berkeley, 2012.
[40] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies

with Rocketfuel. 2002.
[41] S. Uhlig et al. Providing public intradomain traffic matrices to the

research community. ACM SIGCOMM CCR, 36(1), 2006.
[42] H. Wang, C. Qian, Y. Yu, H. Yang, and S. Lam. Practical network-wide

packet behavior identification by ap classifier. In Proc. of ACM CoNext,
2015.

[43] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The only constant is
change: Incorporating time-varying network reservations in data centers.
In Proc. of ACM SIGCOMM, 2012.

[44] H. Yang and S. S. Lam. Real-time verification of network properties
using atomic predicates. In Proc. of IEEE ICNP, 2013.

[45] Y. Zhang et al. StEERING: A Software-Defined Networking for Inline
Service Chaining. In Proc. of IEEE ICNP, 2013.

