
A Survey of Network Function Placement
Xin Li and Chen Qian

Department of Computer Science, University of Kentucky
Email: xin.li@uky.edu, qian@cs.uky.edu

Abstract—Ranging from web caches to firewalls, network
functions play a critical role in modern networks. The emerging
of Network Function Virtualization (NFV) has recently gained
wide attention from both industry and academia, also making
the study of their placement a popular research topic. This
paper surveys recent network function orchestration frameworks,
and particularly the network function placement strategies. We
identify their design considerations as well as the companion
advantages and disadvantages for different placing strategies in
this paper.

I. INTRODUCTION

Network functions (NFs), also known as ”middleboxes”, are
playing an increasingly important role in modern networks,
ranging from mobile networks, enterprise networks, to data-
center networks. A recent survey [29] shows that the number
of NFs is comparable to that of the forwarding devices, indicat-
ing their significance. NFs improve the network performance
(e.g., WAN Optimizer, web proxy and video transcoder, load
balancer), enhance the security (e.g., firewall, IDS/IPS) or
monitor the traffic (e.g., lawful interception, passive network
monitor).

Conventionally, NFs are built in dedicated hardware for
performance concerns, which incur high capital investment
and operating expense. Furthermore, they are hard to manage.
Their replacement and upgrade involve non-trial human labor.
In light of this situation, NFV [12] was proposed, aimed to
address these issues by leveraging visualization technologies
to consolidate NFs into general-purpose hardware platforms.
NFV, along with Software-Defined Network (SDN), enables
automated management of the whole life cycle of virtual
network functions (VNFs), leading to resource efficiency and
expense reduction. How NFs are placed directly determines
some important metrics, such as operating cost and end-to-
end latency. To achieve the benefits from NFV’s ability to
conveniently place VNFs anywhere anytime, a number of
VNFs placement strategies are proposed for different NFV
orchestration frameworks. Apart from centralized NFs, some
other forms of NFs exist towards different objectives, and
their placement is according quite different. We will discuss
different NF frameworks and their placement issues in this
paper.

The rest of this paper is organized as follows. We go deep
into hardware NFs in Sec. II. We review some recent advances
in NFV in Sec. III, followed by other forms of NFs described
in Sec. IV. We discuss related placement-related issues in
Sec. V and potential future research directions in Sec. VI.
We finally conclude this paper in Sec. VII.

II. HARDWARE NETWORK FUNCTION PLACEMENT

Until recently, NFs were mostly built in dedicated hardware.
Though hardware NFs are high-capacity, they are power
hungry and incur large capital investment. As a result, there
are only a limited number of hardware NFs deployed in fixed
points in the network. Different hardware NFs have their
own placement considerations and thus different placement
strategies, as we discuss in this section. TABLE. I summarizes
the comparison.

A. Independent passive NFs

Some passive NFs can work independently to perform a
complete task, without the interaction with other NFs. The
placement strategies for this kind of NFs either tries to max-
imize the utility under the budget constraints or to minimize
the total cost while a certain level of service is guaranteed.

The passive monitor placement falls in this category. The
passive monitor is inside a router or a stand alone device that
tap into a communication link. There is an intrinsic trade-off
between the monitoring coverage and cost (which consists of
the initial capital investment and operating expense). To this
end, the proposed solution in [30] carefully places passive
monitors and controls their sample rate, without chaning
traffic routing pathes. Two integer linear programs (ILPs)
are formulated respectively for two conflicting objectives:
One is to maximize the fraction of IP traffic being sampled
and the other is to minimize the total monitoring cost. The
results of both optimization problems determine the number
of monitors, their optimal place positions and their sampling
rate. It can be further proven that both problems are NP-hard
(maximizing monitoring coverage and minimizing cost inher-
ent the hardness of SET COVER and MAX k-COVERAGE,
respectively). Therefore, greedy heuristics are proposed to
solve the optimization problems.

One problem of this static placement strategy is that varying
traffic matrix renders the previously optimal solution sub-
optimal. MeasuRouting [24] addresses this problem by strate-
gically routing traffic to fix monitoring points while routing
pathes are least disrupted. It is optional after the NF placement.

B. Chained NFs

Some flows may be required, either by applications or
users, to traverse through a given sequence of NFs. This is
called service chaining (or policy chaining). For example, the
network administrator may specify that all http traffic should
follow the service chain: f irewall → IDS→ proxy, for security
purposes. There are two requirements for service chaining:

NF type Location Traffic steering Placement objective
Independent NFs in-line optional max cov./min cost

Chained NFs off-line compulsory min latency

TABLE I
COMPARISON BETWEEN INDEPENDENT PASSIVE NFS & CHAINED NFS.

• Correctness : The sequential order must hold.
• Efficientcy : Traffic should not traverse unnecessary NFs.
Service chaining is more complicated than using inde-

pendent passive NFs. Trivially placing NFs in order on the
routing path may require a prohibitively large number of
NFs. Existing solutions leverage traffic steering to accomplish
service chaining.

PLayer [15] is a policy-aware switching layer adhering to
these two requirements. PLayer explicitly forwards different
classes of traffic through dif sequences of NFs scattering
around the network. PLayer does not use bump-in-the-wire
fashion (in-line), because traffic is also required to not traverse
unwanted NFs. To achieve this, off-line processing is utilized,
which means traffic is explicitly forwarded to NFs plugged
into switches for processing.

The second requirement of service chaining implies off-line
NF placement.

PLayer can only use inflexible Layer-2 mechanisms (e.g,
spanning tree) to deliver the traffic between NFs. The SDN-
based solution StEERING [31] which allows fine-grained per-
subscriber and per-application service chains can be applied
to both L2/L3 networks. Like PLayer, StEERING also places
the NFs in fixed off-line points and StEERING steers traf-
fic to these NFs in order through centrally configuring the
forwarding rules on the SDN switches. The new paradigm
of SDN allows the network operators to easily implement
the flexible traffic steering. Though the ability of flexible
traffic steering enables the freedom to place NFs anywhere
in the network without violating the requirements of service
chaining, the placement strategy impacts the user performance.
StEERING provides one placement strategy with the objective
of minimizing the average time for the subscribers’ traffic to
traverse through all required NFs, in which the traffic delay is
calculated as the sum of shortest-path delays between consec-
utive NFs. Since the search space is huge, StEERING adopts
an approximation heuristic, rather than exhaustive search, to
efficiently solve this placement problem.

III. NFV ORCHESTRATION AND PLACEMENT

The new paradigm of NFV enables the great flexibility as
for the deployment, instantiation, configuration, and termina-
tion of virtual NFs on demand. The virtualization nature of
NFV fosters a number of fabulous features which are not
possible in conventional hardware NFs: cheap elastic virtual
NFs, dynamic horizontal scaling and fast state migration, etc.
Recently, a bunch of NFV frameworks have been proposed
to efficiently manage the hardware resources. Different design
spaces of these NFV frameworks lead to their own appropriate
placement strategies. We compare different NFV frameworks
and summarize how the design space affects the placement in

TABLE .II1. Despite the variety, all existing NFV frameworks
place VNFs at off-line servers.

A. Thread-based Framework

Consolidating software NFs into generic hardware platforms
enables resource multiplexing as well as components reuse.
CoMb [25] is a pioneer NFV framework, which can host
modular VNFs. These NFs are contained in threads. In order
to reuse software elements, the incoming packets are first
processed by elements shared by all VNFs, such as protocol
parser and session reconstructor. After that, these packets
are classified and the policy shim layer then sends them to
the corresponding thread-based NFs for further processing.
CoMb assumes that the resource footprint of each thread is
proportional to its workload, whereas alternative containers
(e.g., virtual machine) introduce non-trial fixed overhead.

1) Monolithic Consolidating: Using the lightweight thread
as the container stems great benefits with regards to service
chaining and NF placement. The benefits are two-fold.

• CoMb [25] consolidates all the required NFs in a single
thread for each traffic class, which drastically eases the
management of the service chain. Moreover, such mono-
lithic consolidating obviates the need for considering
mangling NFs, which actively modify the traffic header
or the payload, such as NATs, web proxies. Otherwise, a
packet may be not recognized after mangling NFs, and
thus we do not know which NF to process it next.

• One or more monolithic NFs are instantiated on the
servers in the routing path. With centralized network-wide
view, the processing workload are spatially distributed in
order to balance the load.

Given proliferated service chains and moderate number of
traffic flows, a large number of monolithic NFs are needed
to scatter around in the network. If the thread was not
lightweight, there should be not enough resources to host them.

2) Cross-border On-path Placement: A service chain may
contain location dependent NFs which have preferred locations
in the network. For example, web proxies would better to be
closed to the clients in order to optimize user experience and
reduce bandwidth consumption. On the other hand, some NFs
that encrypt the traffic may inflate the bandwidth utilization
and these NFs are suggested to be placed near the destination.
It is location dependency that CoMb [25] falls short in.

To this end, MIDAS [1] is proposed as an extension to
CoMb, allowing each traffic flow to be processed by NFs
located at different machines along its routing path, as opposed
to CoMb, where all required NFs are consolidated into a single
machine. MIDAS is especially useful in the Internet, where
location dependency impacts the performance significantly. In-
ternet Service Providers (ISPs) have started deploying micro-
datacenters, where CoMb servers can be hosted. NF location
dependency may require the NFs to be provided by multiple
NF providers (NFPs). MIDAS resolves the problems of CoMb

1In this table, CSamp does not have service chains, so it is not necessary
to consider order preserving and mangling NFs.

NFV form NFV framework Placement strategy On path? Mangling NF? Location
dependency?

Order
preserve?

Thread-based CoMb [25] Monolithic consolidating X X x X
MIDAS [1] Cross-border on-path placement X x X X

VM-based

E2 [22] Path-loosely-controlled placement x x x X
Statos [10] Path-loosely-controlled placement x X x X

VNP-OP [4] Path-tightly-controlled placement x X x X
PACE [18] Unordered placement x x x x

Other Forms
Slick [3] Partial consolidating X x X X

CSamp [27] On-path distributed placement X N/A X N/A
ETTM [8] Monolithic consolidating X X x X

TABLE II
COMPARISON BETWEEN DIFFERENT NFV FRAMEWORKS

servers discovery and on-path processing establishment across
multiple NFPs. Once the CoMb servers on the routing path are
discovered, MIDAS assigns required NFs to CoMb servers
hosted by multiple NFPs in two stages. The first stage is
to compute each NFP’s responsibility considering utilization
balancing across NFPs and location dependency. The heuristic
for the second stage is used to select CoMb servers within the
scope of a single NFPs while respecting the order.

B. VM-based Framework

Isolation is an indispensable property for both performance
and security, especially in the context of multi-tenant clouds,
where the resources are shared among cloud tenants. Not
for isolation, the busy VNFs may consume much more re-
sources than other co-residing VNFs, leading to starvation
and violation of the stringent SLO. Moreover, isolation is
perceived as the key to cloud security. As a result, most
NFV framworks contain NFs in virtual machines (VMs) for
isolation. A running VM reserves a fixed amount of hardware
resources (including CPU, memory, hard disk, etc.) regardless
of its workload. Consequently, to the best of my knowledge, it
is assumed in all VM-based frameworks that one instance of
VNF consumes fixed resources and possesses fixed processing
capacity. The heavyweight VM prohibits installing all the
required VNFs on the routing path for every traffic flow for
two main reasons:

• The VMs consumes substantial resources.
• The VM booting time is prohibitively long (tens of

seconds). VM installation happens at a much coarser
time-scale than traffic dynamics.

Instead, all these VM-based frameworks steer traffic flows
between VNFs to fulfill service chaining. On the other hand,
these VM-based frameworks are different from hardware NFs
in that they can decide where to place VNFs in runtime, hence
more freedom to optimize the performance&cost.

To achieve the best performance benefits from smart NF
placements, they would better be augmented by other mecha-
nisms to incorporate traffic dynamics, such as flow distribution
(small time-scale load balancing), dynamic scaling in/out
(resource efficiency), etc. We briefly discuss this topic in Sec.
III-B4.

Flowstream [11] is the first VM-based framework, which
was published as early as 2009. The authors of Flowstream

noticed the narrowed performance gap between commodity
switches/servers and customized high-end switches/hardware
NFs, and successfully predicted the rise of commodity hard-
ware to process traffic. NFs are consolidated to servers in the
form of VMs. The traffic flow routes depend on the fined-
grained control of SDN. Nevertheless, Flowstream is just a
high-level design without concrete implementation.

1) Path Loosely Controlled Placement: There are existing
placement algorithms, resolving the problem of mapping VMs
onto physical machines in the cloud. Some VM-based frame-
works directly rely on these placement algorithms where VNFs
are viewed as ordinary VMs.

The baseline VM placement algorithms only consider serv-
er hardware resources, such as Least Used Host placement
algorithm and Least Busy Host placement algorithm [7]. The
rapid growth of distributed analytics (e.g., MapReduce) and
time-sensitive applications raise a big concern about network
performances. Hence, network-aware placement algorithms
are proposed. E2 [22], a VM-based NFV framework, relies
on them to minimize intra-server traffic when mapping each
VNF instance to a particular server, because inter-server
communication incurs less latency and bandwidth between
servers. E2 [22] targets Central Offices (COs), where VNFs are
clustered and interconnected by a Layer-2 network. COs are
very common in the backhaul of mobile networks to provide
a wide variety of services. The initial NF placement involves
four steps. The first step is to merge individual service chains
into a single policy graph (pGraph), in order to identify the
relationship between all NFs. The second step is sizing. E2
determines the number of instances for each NF in the pGraph
given the estimate of the load on a NF and the per-instance
capacity. The workload of a NF will be evenly distributed
among the its VNF instances. The third step is converting the
pGraph to an iGraph, or the ”instance graph”. In the iGraph,
each node represents an instance of NF and the edge weight
captures the traffic demand between two VNF instances. The
final step is the actual instance placement with the objective
to minimize inter-server traffic. The optimization problem is
modeled as graph partition, which E2 solves by an iterative
local search algorithm based Kernighan-Lin heuristic.

Statos [10] is another network-aware NFV platform being
able to correctly forward traffic in face of mangling NFs
(we have discussed them in Sec. III-A1). Statos exhaustively

enumerates the possible downstream pathes for each mangling
NF in the policy graph. The mangling NF are cloned as many
times as the number of downstream pathes, with each clone
being responsible for one downstream path. By simply cloning
the mangling NFs when there is ambiguity, Statos ensures the
correctness of service chaining even though this transformation
potentially increases the number of needed VNF instances.
Finally, Statos employs network-aware VM placement algo-
rithms (such as TMVPP [20]) to avoid congestion.

2) Path Tightly Controlled Placement: In existing VM
placement algorithms, it is assumed that the routing path
between each VM-pair is determined merely by the physical
locations of VMs. Even though sometimes traffic engineering
is allowed, the network operators still cannot explicitly con-
trol the routing path. With the tremendous convenience and
flexibility bought by SDN, some NFV frameworks control the
routing pathes between NF pairs, enabling joint placement and
routing optimization for better performance.

VNP-OP [4], is an optimization problem referred as Vir-
tualized Network Function Orchestration Problem, trying to
minimize the cost (which can be further broken down into
deploy cost, energy cost and cost of forwarding traffic) ,
penalty for SLO violation and resource fragmentation by
carefully placing VNFs as well as forwarding traffic through
best available pathes. This optimization is formulated as an
Integer Linear Program (ILP) taking into account server/link
capacity constraints and service chaining. VNP-OP can be
reduced to trans-shipment problem, and therefore is NP-hard.
No doubt, a heuristic is proposed to solve this problem.

Charikar et al. first theoretically analyzed this joint opti-
mization problem by recognizing it as a new extension to
multi-commodity flow problem [5].

3) Unordered Placement: The aforementioned VM-based
NFV frameworks all strictly preserve the sequential order
specified by the service chain. However, sometimes, the
service chain can be partially ordered or even completely
unordered. For example, from a security stand point, there
is little difference to put a passive monitor before or after a
DPI. PACE [18] addresses the VNF placement for unordered
service chains in cloud, with the objective to satisfy as many
tenants’ requests as possible.

PACE [18] envisages the feasibility of enforcing policies
in cloud using traditional L2 spanning tree, L2 shortest path,
Openflow-based routing, source routing and pswitch-based
routing [15]. In PACE, both offline and online optimization
problems are in the form of ILP, which can be efficiently
solved by leveraging LP relaxation.

4) Incorporating Dynamics: Statos [10] uses the end-to-
end application performance as an indicator of VNFs being the
performance bottleneck, in the face of which Statos employs
a combination of three mechanisms to resolve the bottleneck
at increasingly coarser time-scale: flow distribution, horizontal
scaling and instance migration.

E2 [22] provides hooks for VNFs to report their instan-
taneous load and it also measures the processing latency of
each VNF instance to detect overload. In case of overloading,

dynamic scaling out occurs.
Sometimes on-going flows may be required to re-distributed

to other VNFs to balance the workload. However it is prob-
lematic if the VNF is stateful. The expensive live migration
of the whole virtual machines [6] may happen at a much
coarser time-scale than the elastic provision. OpenNF [14],
rather than copying the whole virtual machine, only manages
associated VNF internal states and network forwarding states
during flow re-distribution. According to OpenNF, VNF states
are classified into three categories based on the their scope:
per-flow, multi-flow and all-flow. NFs are required minor
modification such that they can expose APIs to export/import
states.

IV. OTHER FORMS OF NETWORK FUNCTIONS

Even though the NF frameworks described in this section
still belong to NFV, they are so special that we use a separate
section for them.

A. Element-based Framework

The NFs we discuss above, either hardware, thread-based or
VM-based, which vertically integrate basic modules (e.g., pro-
tocol parse, encryption/decryption), can independently com-
plete a particular packet processing task. On the other hand,
Slick [3] takes another way which allows the operators to
implement NFs as a chain of lightweight functions (e.g,
checksums) which are placed across the network for reuse.
These lightweight functions, referred as elements in Slick, are
able to be reconfigured at runtime.

The placement consists of two steps. The first step is
to consolidate elements if necessary. The Slick controller
decide whether to consolidate contiguous elements onto a
single machine or distribute them across multiple machines
based on each element’s inflation factor, which is defined as
log(fout/ fin) where fout and fin denote its output and input
traffic volumes respectively. To reduce the link bandwidth
consumption, it is intuitive to place elements with negative
inflation factors near the sources and others near the desti-
nation. Therefore, the controller breaks the element list into
sub-lists, each of which is placed in a single machine, such that
the bandwidth consumption is minimized. The second step is
to place consolidated elements. The placement strategy is that
consolidated elements with negative (positive) inflation factors
are placed onto the node on the longest common path of all
traffic closed to sources (destinations). The rest consolidated
elements are placed in a way such that the average path
length for all traffic is minimized. Unlike CoMb [25] using
monolithic consolidating, the placement strategy of Slick is
partial consolidating.

B. Distributed NFs

Nowadays, most NFs are resided at certain locations in
the network, each responsible for a static portion of the flow
space. With ever growing network scale and traffic volume,
these centralized NFs become the performance bottleneck.
Moreover, steering traffic to them incurs non-trivial overhead.

CSamp [27] is a brave endeavour towards scalability by
employing a system-wide approach to coordinate distributed
NFs for fined-grained flow level monitoring. In CSamp, the
monitor NFs are implemented as applications inside routers.
To avoid duplicated sampling due to multiple monitor NFs on
the routing path, CSamp uses a hash-based packet selection
to achieve the coordination while obviating the overhead
of explicit communication. When these distributed NFs are
placed, a network-wide goal, such as maximizing the coverage,
is achieved by distributing the workload to monitor NFs across
the network while respecting the resource constraints.

Apart from distributed monitoring, distributed redundant
elimination [2] and distributed IDS/IPS [26] have already been
implemented.

C. Host-based Framework

The NFs we have talked about are all residing inside the
network, and that is why we also call them ”middleboxes” too.
In order to exploit the increasing computing power shipped
with advanced technologies (such as multi-core architecture)
in commodity servers, ETTM [8] are proposed to radically
move the NFs onto participating endpoints to provide a reliable
and trustworthy NFV framework. The NFs running on the
endpoints are contained in VMs in order to isolate NFs
and end-user applications, and they are logically controlled
by a central controller. Though endpoints are notoriously
famous for being insecure, ETTM benefits from the trusted
computing module (TPM) available in many current computers
to provide NFs with the Attested Execution Environment
(AEE). These distributed NFs residing in endpoints use Paxos
[17] distributed consensus algorithm as a lever to provide
consistent decisions, also as a way to provide fault-tolerance
and reliability. Since the traffic is only processed at endpoints,
similar to CoMb [25], the required NFs in the service chain
are piled at the endpoints. Even though the NFs are contained
in VMs, the abundant resources in each endpoint are enough
to support its own service chain.

V. DISCUSSIONS

Can different forms of NFs be mixed together?
The hybrid environment has already been discussed in

literature. VNF-P [21] focuses on a hybrid scenario where the
services are provided by both fast dedicated hardware NFs (for
baseline workload) and flexible on-demand VNFs (for burst
workload). VNF-P uses a similar method to what presented
in Sec. III-B2 to place VNFs and to steer traffic. E2 [22]
introduces a high-performance and flexible data plane where
Click [16] modules (e.g., classifier and TCP reconstructor, etc.)
are embedded to accelerate the packet processing. The VNFs
in E2 need to explicitly call the API exported by the dataplane
to achieve the benefit from such data path. In this sense, E2 is
actually a hybrid of VM-based and element-based framework.

Can VM-based framework provide on-path placement?
On-path placement is desired for it introduces minimal

inference to traffic engineering and obviates the need for com-
plicated forwarding rules in routers. However, the overhead of

VMs hinders on-path placement in existing VM-based NFV
frameworks. ClickOS [19] opens this possibility, even though
it is not explicitly stated in the original paper.

ClickOS [19] is meant to be built as a platform specially
optimized for NFV to make fast deployment possible. ClickOS
is a Xen-based virtual machine running Click [16] configura-
tions in tailored guest OS environment. Since ClickOS adopts
Click [16] as the programming abstraction, ClickOS only
preserve the minimal code to support the running of Click.
The ClickOS image size is further reduced by implementing
various back-end drivers in the Xen host OS and only keeping
a uniform front-end driver in the ClickOS virtual machine. As
a result, the ClickOS image size is as small as 5MB and the
ClickOS virtual machine can boot in 30 milliseconds. Due to
the small memory footprint, a server can easily support up to
hundreds of ClickOS VMs. Enhanced with high-performance
inter-VM communication (e.g, NETVM [13]), it is possible to
pile ClickOS VMs in a single server on the routing path to
provide services.

Can we outsource NFs?
Sherry et al. implemented APLOMB [28], a service to

oursource NFs in cloud without significant degrading of per-
formance. By leveraging DNS-based redirection, the incoming
traffic of an APLOMB customer is routed directly to the cloud
first (for outsourced NF processing), then to the customer. The
latency due to the indirection is negligible, because of the
violation of triangle inequality in inter-domain routing and
that cloud providers usually have a good connection to the
Internet.

Where do service chains come from?
Service chains are one of the most important inputs when we

run placement algorithms. The aforementioned work focuses
on different methods to implement service chaining, whereas
PGA [23] tries to answer an orthogonal question: how does the
policy chain be specified. In the enterprise network, multiple
entities independently declare their own network policies.
PGA is a fast automation tool to compose independent network
policies into a global-scope one for each traffic class. By
leveraging a graph structure, PGA allows the detection and
resolving of the conflict, if there is any.

VI. CHALLENGES AND FUTURE WORK

VM-based NFV frameworks are studied most recently due
to the mature technologies it adopts from tens years of virtual
machine development. However, sometimes directly applying
them to NFV would result in sub-optimal performance.

To be more specific in the area of VNF placement, the
traffic pattern between production VMs are different from
that of VNF. For example, several VM placement algorithms,
like TMVPP [20], assume that the traffic matrix is known
before VM placement and the traffic bandwidth consumption
between each VM pair is stable. These assumptions do not
hold in the context of NFV anymore, where the traffic become
unpredictable. For instance, people now begin to build security
infrastructure based on NFV [9] and the intra-VNF matrix
varies vigorously if DDoS attacks are mounted, which are

unpredictable in general. Moreover, the dynamic scaling in/out
of VNFs compels efficient online placement algorithms. For-
tunately, NFV also offers new opportunities for performance
optimization. Even though we cannot get the traffic matrix
in NFV context, there are correlations between intra-VNF
traffic. For example, suppose we have an IDS with steady rate
of incoming traffic. If a flow is suspicious to be malicious,
the traffic of that flow would be sent to another network
function (say a DPI) for further analysis; otherwise, the traffic
would be sent to the firewall. Clearly, the traffic rate to the
firewall and that to the DPI are negatively correlated. Given
such information, the NFV framework could strategically place
these two kinds of VNFs nearby. Since they are less likely
to encounter the peak workload simultaneously, the hardware
resources are safely and efficiently multiplexed.

The mangling NFs imposes a big challenge which does not
exist in traditional VM placement. Current solutions mainly
rely on the global ID encoded in each packet to ensure correct
forwarding in face of mangling NFs. These global IDs are
difficult to aggregate, so that the forwarding rules in switches
are inflated. Scalability is a big issue for such solutions. Stratos
[10] is a good start to exploit the power of VNF placement
to address mangling NFs, even though in this solution more
VNFs are initiated than necessary. If using global ID, we
could try to place mangling NFs near the destinations so that
upstream switches on the routing path avoid rules related to
the global IDs. We envision that the combination of the two
mechanisms, global ID and VNF placement to name, is worthy
further investigation to incorporate mangling NFs in a more
scalable and efficient manner.

VII. CONCLUSION

In this paper, we provide a comprehensive survey regarding
the placement issues of both conventional hardware network
functions and currently popular virtualized network functions.
We survey different network function frameworks and present
how their design considerations affect the network function
placement strategies. We conclude with a discussion of other
topics closely related to network function placement and pos-
sible future research challenges and opportunities associated
with it.

REFERENCES

[1] A. Abujoda and P. Papadimitriou. Midas: Middlebox discovery and
selection for on-path flow processing. 2015.

[2] A. Anand, V. Sekar, and A. Akella. Smartre: an architecture for
coordinated network-wide redundancy elimination. In Proc. of ACM
SIGCOMM, 2009.

[3] B. Anwer, T. Benson, N. Feamster, and D. Levin. Programming slick
network functions. In Proc. of ACM SOSR, 2015.

[4] M. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. Orchestrating
virtualized network functions. arXiv preprint arXiv:1503.06377, 2015.

[5] M. Charikar, Y. Naamad, J. Rexford, and K. Zou. Multi-commodity
flow with in-network processing. Manuscript, www. cs. princeton. edu/˜
jrex/papers/mopt14. pdf.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In Proc. of the
USENIX NSDI, 2005.

[7] E. Clayman, S.and Maini, A. Galis, A. Manzalini, and N. Mazzocca.
The dynamic placement of virtual network functions. In Proc. of IEEE
NOMS, 2014.

[8] C. Dixon, H. Uppal, V. Brajkovic, D. Brandon, T. Anderson, and
A. Krishnamurthy. Ettm: a scalable fault tolerant network manager.
In Proc. of USENIX NSDI, 2011.

[9] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Flexible and elastic
ddos defense using bohatei. In USENIX Security, 2015.

[10] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, V. Sekar, and A. Akella. Stratos: A network-aware or-
chestration layer for virtual middleboxes in clouds. arXiv preprint
arXiv:1305.0209, 2013.

[11] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou, M. Handley, and
L. Mathy. Flow processing and the rise of commodity network hardware.
ACM SIGCOMM CCR, 39(2), 2009.

[12] R. Guerzoni et al. Network functions virtualisation: an introduction,
benefits, enablers, challenges and call for action, introductory white
paper. In SDN and OpenFlow World Congress, 2012.

[13] J. Hwang, K. K. Ramakrishnan, and T. Wood. Netvm: high performance
and flexible networking using virtualization on commodity platforms. In
Proc. of USENIX NSDI, 2014.

[14] A. Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das,
and A. Akella. Opennf: enabling innovation in network function control.
In Proc. of ACM SIGCOMM, 2014.

[15] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching layer
for data centers. In Proc. of ACM SIGCOMM, 2008.

[16] E. Kohler. The Click Modular Router. PhD thesis, Massachusetts
Institute of Technology, 2000.

[17] L. Lamport. Paxos made simple. 2001.
[18] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghay, D. Li, G. Wilfong, Y. R.

Yang, and C. Guo. Pace: policy-aware application cloud embedding. In
Proc. of IEEE INFOCOM, 2013.

[19] J. Martins et al. Clickos and the art of network function virtualization.
In Proc. of USENIX NSDI, 2014.

[20] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data
center networks with traffic-aware virtual machine placement. In Proc.
of IEEE INFOCOM, 2010.

[21] H. Moens and F. De Turck. Vnf-p: A model for efficient placement of
virtualized network functions. In Proc. of IEEE CNSM, 2014.

[22] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker. E2: A framework for nfv applications. In Proc. of ACM
SOSP, 2015.

[23] C. Prakash, J. Lee, Y. Turner, J. M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang. Pga: Using graphs to
express and automatically reconcile network policies. In Proc. of ACM
SIGCOMM, 2015.

[24] S. Raza, G. Huang, C. Chuah, S. Seetharaman, and J. P. Singh.
Measurouting: a framework for routing assisted traffic monitoring.
IEEE/ACM Transactions on Networking, 20(1):45–56, 2012.

[25] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and
implementation of a consolidated middlebox architecture. In Proc. of
USENIX NSDI, 2012.

[26] V. Sekar, R. Krishnaswamy, A. Gupta, and M. K. Reiter. Network-wide
deployment of intrusion detection and prevention systems. 2010.

[27] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and
D. G. Andersen. csamp: A system for network-wide flow monitoring.
In Proc. of USENIX NSDI, 2008.

[28] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: network
processing as a cloud service. 2012.

[29] J. Sherry and S. Ratnasamy. A Survey of Enterprise Middlebox
Deployments. Technical report, EECS, UC Berkeley, 2012.

[30] K. Suh, Y. Guo, J. Kurose, and D. Towsley. Locating network moni-
tors: complexity, heuristics, and coverage. Computer Communications,
29(10), 2006.

[31] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan,
et al. Steering: A software-defined networking for inline service
chaining. In Proc. of IEEE ICNP, 2013.

